These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4261965)

  • 61. [Influence of the age of the donor embryo and the seeding concentration on the evolution of primary cultures of chicken heart cells].
    Renaud JF; Le Douarin G
    C R Seances Soc Biol Fil; 1972; 166(12):1780-4. PubMed ID: 4579090
    [No Abstract]   [Full Text] [Related]  

  • 62. Myocardialization of the cardiac outflow tract.
    van den Hoff MJ; Moorman AF; Ruijter JM; Lamers WH; Bennington RW; Markwald RR; Wessels A
    Dev Biol; 1999 Aug; 212(2):477-90. PubMed ID: 10433836
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The phylogenetic and ontogenetic development of the mammalian heart: some theoretical considerations.
    Challice CE; Virágh S
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(1-2):131-40. PubMed ID: 4416406
    [No Abstract]   [Full Text] [Related]  

  • 64. Developmental change in morphogenetic properties: embryonic chick heart tissue and cells segregate from other tissues in age-dependent patterns.
    Lesseps RJ
    J Exp Zool; 1973 Aug; 185(2):159-68. PubMed ID: 4724308
    [No Abstract]   [Full Text] [Related]  

  • 65. Mechanism of the development of coronary arteries in chick embryo.
    Rychter Z; Ostádal B
    Folia Morphol (Praha); 1971; 19(2):113-24. PubMed ID: 4102482
    [No Abstract]   [Full Text] [Related]  

  • 66. Formation of the terminal vascular bed in the chick embryo heart.
    Rychterová V
    Folia Morphol (Praha); 1977; 25(1):7-14. PubMed ID: 858570
    [No Abstract]   [Full Text] [Related]  

  • 67. The development of the arterial outflow tract in the chick embryo heart.
    Jaffee OC
    Anat Rec; 1967 May; 158(1):35-42. PubMed ID: 6040353
    [No Abstract]   [Full Text] [Related]  

  • 68. Myocardial heterogeneity in permissiveness for epicardium-derived cells and endothelial precursor cells along the developing heart tube at the onset of coronary vascularization.
    Lie-Venema H; Eralp I; Maas S; Gittenberger-De Groot AC; Poelmann RE; DeRuiter MC
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Feb; 282(2):120-9. PubMed ID: 15627984
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Development of proliferation structure of the ventricular heart wall in the chick embryo between the 6th and 14th day of embryogenesis.
    Rychterová V
    Folia Morphol (Praha); 1978; 26(2):131-43. PubMed ID: 640539
    [No Abstract]   [Full Text] [Related]  

  • 70. [Involvement of the primitive cardiac segments in the normal cardiogenesis. Its importance in the pediatric cardiology].
    Salazar García M; Sánchez Gómez C; Contreras Ramos A; Carrillo Avalos BA; Revilla Monsalve MC; Palomino Garibay MA
    Arch Cardiol Mex; 2006; 76 Suppl 4():S46-57. PubMed ID: 17469334
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The rostro-caudal position of cardiac myocytes affect their fate.
    Patwardhan V; Fernandez S; Montgomery M; Litvin J
    Dev Dyn; 2000 May; 218(1):123-35. PubMed ID: 10822265
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Electrophysiologic aspects of automatism of the ventricular myocardium in the chick embryo].
    Obrecht-Coutris G; Le Douarin G; Coraboeuf E
    C R Acad Hebd Seances Acad Sci D; 1968 Aug; 267(7):765-8. PubMed ID: 4972674
    [No Abstract]   [Full Text] [Related]  

  • 73. Variations in microscopic anatomy and ultrastructure of human embryonic hearts subjected to three different modes of fixation.
    Moscoso G; Pexieder T
    Pathol Res Pract; 1990 Dec; 186(6):768-74. PubMed ID: 2084639
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Relations between development of the capillary wall and myoarchitecture of the rat heart.
    Ostadal B; Schiebler TH; Rychter Z
    Adv Exp Med Biol; 1975; 53():375-88. PubMed ID: 1119347
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Experimental investigations on the sinus venosus and cardinal veins of the chick embryo].
    Müntener M
    Z Anat Entwicklungsgesch; 1970; 131(3):274-82. PubMed ID: 5507226
    [No Abstract]   [Full Text] [Related]  

  • 76. An attempt to determine indirectly the vascularity of the heart muscle by measuring the tissue concentration of haemoglobin in normal and anaemic rats.
    Rakusan K; Wachtlová M; Poupa O
    Physiol Bohemoslov; 1969 Jul; 18(1):1-5. PubMed ID: 4240375
    [No Abstract]   [Full Text] [Related]  

  • 77. The high turnover rate of phosphatidylinositol in chicken heart ventricular cells during the earlier stages of development.
    Ishima Y; Nakagawa Y; Waku K
    Arch Biochem Biophys; 1982 Mar; 214(1):180-5. PubMed ID: 7081995
    [No Abstract]   [Full Text] [Related]  

  • 78. The septation of the arterial pole of the heart in the chick embryo. I. Introduction.
    Lanne HM
    Acta Morphol Neerl Scand; 1978 Feb; 16(1):17-27. PubMed ID: 347890
    [No Abstract]   [Full Text] [Related]  

  • 79. Development of the heart: (1) formation of the cardiac chambers and arterial trunks.
    Moorman A; Webb S; Brown NA; Lamers W; Anderson RH
    Heart; 2003 Jul; 89(7):806-14. PubMed ID: 12807866
    [No Abstract]   [Full Text] [Related]  

  • 80. MYOCARDIAL FIBER SIZE AND CAPILLARY-FIBER RATIO IN THE RIGHT AND LEFT VENTRICLES OF THE RAT.
    ANGELAKOS ET; BERNARDINI P; BARRETT WC
    Anat Rec; 1964 Aug; 149():671-6. PubMed ID: 14203746
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.