These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 4262781)

  • 21. Studies on calcium transport system in cardiac sarcoplasmic vesicles and its inhibition by dl-propranolol.
    Fujita S
    Arch Int Pharmacodyn Ther; 1976 Mar; 220(1):28-44. PubMed ID: 133644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the Ca2+ concentration gradient in the adenosine 5'-triphosphate-inorganic phosphate exchange catalyzed by sarcoplasmic reticulum.
    de Meis L; Costa Carvalho Mda G
    Biochemistry; 1974 Nov; 13(24):5032-8. PubMed ID: 4433536
    [No Abstract]   [Full Text] [Related]  

  • 23. Interference of nucleoside diphosphates and inorganic phosphate with nucleoside-triphosphate-dependent calcium fluxes and calcium-dependent nucleoside-triphosphate hydrolysis in membranes of sarcoplasmic-reticulum vesicles.
    Waas W; Hasselbach W
    Eur J Biochem; 1981 Jun; 116(3):601-8. PubMed ID: 7262078
    [No Abstract]   [Full Text] [Related]  

  • 24. [Ability of nucleoside triphosphates to provide for Ca 2+ transport by sarcoplasmic reticulum fragments].
    Lushchak VI
    Ukr Biokhim Zh (1978); 1990; 62(2):64-9. PubMed ID: 2142350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro binding of dantrolene to sarcoplasmic reticulum of rabbit skeletal muscle.
    Dehpour AR; Mofakham S; Mahmoudian M
    Biochem Pharmacol; 1982 Mar; 31(6):965-8. PubMed ID: 7082378
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Peroxide modification of skeletal muscle sarcoplasmic reticulum in antioxidant deficiency and under the action of ionol. I. Calcium transport into sarcoplasmic reticulum membranes].
    Gubskiĭ IuI; Zadorina OV; Fedorov AN; Bogdanova LA
    Ukr Biokhim Zh (1978); 1991; 63(4):81-7. PubMed ID: 1659010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 2,2,4-Trimethylpentane induces Ca2+ release from the sarcoplasmic reticulum terminal cisterns.
    Ritov VB; Men'shikova EV
    Biochim Biophys Acta; 1991 Aug; 1067(2):187-90. PubMed ID: 1715188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of the prostaglandin derivative PGBx on calcium uptake and release by skeletal muscle sarcoplasmic reticulum.
    Kruger M; Booyens J
    S Afr Med J; 1982 Nov; 62(23):855-8. PubMed ID: 6216610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectrophotometric studies on the interaction of sarcoplasmic-reticulum fragments with adenosine triphosphate and calcium.
    Nakamaru Y; Schwartz A
    Eur J Biochem; 1973 Apr; 34(1):159-68. PubMed ID: 4701495
    [No Abstract]   [Full Text] [Related]  

  • 30. Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane.
    Kutchai H; Campbell KP
    Biochemistry; 1989 May; 28(11):4830-9. PubMed ID: 2527558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on calcium transport by sarcoplasmic reticulum vesicles using fluorescence probes.
    Ueno T; Sekine T
    J Biochem; 1978 Oct; 84(4):787-94. PubMed ID: 711700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism of action of the calcium pump from rabbit muscle sarcoplasmic reticulum [proceedings].
    Yates DW; Duance VC; Tebar AR; Buckberry P
    Biochem Soc Trans; 1977; 5(5):1270-2. PubMed ID: 411693
    [No Abstract]   [Full Text] [Related]  

  • 33. [Effect of caffeine and glycerin on the Ca transport system of sarcoplasmic reticulum fragments from frog skeletal muscles].
    Uspanova ZhK; Esyrev OV; Pak AD; Sarsenova ShS; Nusupova ZhA
    Tsitologiia; 1984 Aug; 26(8):962-5. PubMed ID: 6238465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Transport of Ca2+ in the sarcoplasmic reticulum of skeletal muscles in hyperthermia].
    Avetisova NL; Fedorov AN; Seferova RI
    Ukr Biokhim Zh (1978); 1992; 64(1):93-7. PubMed ID: 1387748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid requirement of the vanadate effect on the binding of calcium and ATP to the calcium transport ATPase of the sarcoplasmic reticulum.
    Medda P; Hasselbach W
    Eur J Biochem; 1985 Jan; 146(2):255-60. PubMed ID: 3155683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium transport in transverse tubules isolated from rabbit skeletal muscle.
    Hidalgo C; González ME; García AM
    Biochim Biophys Acta; 1986 Jan; 854(2):279-86. PubMed ID: 3080021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Pharmacological influencing of the active transport of calcium, potassium and adenine nucleotides in isolated mitochondria].
    Noack E; Greeff K
    Naunyn Schmiedebergs Arch Pharmakol; 1970; 266(4):410-1. PubMed ID: 4253837
    [No Abstract]   [Full Text] [Related]  

  • 38. Heat production and proton release during the ATP-driven Ca uptake by fragmented sarcoplasmic reticulum from bullfrog and rabbit skeletal muscle.
    Kodama T; Kurebayashi N; Ogawa Y
    J Biochem; 1980 Nov; 88(5):1259-65. PubMed ID: 6257660
    [No Abstract]   [Full Text] [Related]  

  • 39. Pathways of calcium release from heavy sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle.
    Rubtsov AM; Quinn PJ; Boldyrev AA
    FEBS Lett; 1988 Oct; 238(2):240-4. PubMed ID: 2458967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The incorporation of arsenazo III into fragmented sarcoplasmic-reticulum vesicles, and its use to study the adenosine triphosphate analogue adenosine 5'-[beta gamma-imido]triphosphate as a substrate for the calcium pump [proceedings].
    Hole CJ; Yates DW
    Biochem Soc Trans; 1979 Oct; 7(5):1101-2. PubMed ID: 510714
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.