These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 4262782)

  • 41. A comparison of 5-hydroxyindoles in various regions of dog brain and cerebrospinal fluid.
    Eccleston D; Ashcroft GW; Moir AT; Parker-Rhodes A; Lutz W; O'Mahoney DP
    J Neurochem; 1968 Sep; 15(9):947-57. PubMed ID: 5303059
    [No Abstract]   [Full Text] [Related]  

  • 42. The distribution of 5-hydroxyindoleacetic acid in various animals and its fluorometric analysis in diverse biological material.
    Anton AH; Sayre DF
    J Pharmacol Exp Ther; 1971 Nov; 179(2):207-17. PubMed ID: 5133599
    [No Abstract]   [Full Text] [Related]  

  • 43. Neurochemical and behavioral studies on the experimental phenylketonuric rats.
    Kohsaka S; Tsukada Y
    Keio J Med; 1979 Jul; 28(2):97-108. PubMed ID: 316478
    [No Abstract]   [Full Text] [Related]  

  • 44. DRUG-INDUCED CHANGES OF THE METABOLISM OF 5-HYDROXYTRYPTAMINE IN THE BRAIN OF X-RAY-TREATED RATS.
    PALAIC D; SUPEK Z
    J Neurochem; 1965 Apr; 12():329-33. PubMed ID: 14336232
    [No Abstract]   [Full Text] [Related]  

  • 45. A critical evaluation of LC-EC for the simultaneous determination of 5-hydroxytryptophan, 5-HT, 5-HIAA and HVA in biological samples using GC-MS for validation.
    Narasimhachari N; Boadle-Biber MC; Friedel RO
    Res Commun Chem Pathol Pharmacol; 1982 Sep; 37(3):413-30. PubMed ID: 6184757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous determination of tryptophan, serotonin and 5-hydroxyindoleacetic acid in rat brain by high-performance liquid chromatography using a weak acidic cation-exchange resin.
    Hori S; Ohtani K; Ohtani S; Kayanuma K; Ito T
    J Chromatogr; 1982 Aug; 231(1):161-5. PubMed ID: 6181085
    [No Abstract]   [Full Text] [Related]  

  • 47. Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain.
    Curzon G; Green AR
    Br J Pharmacol; 1970 Jul; 39(3):653-5. PubMed ID: 5472211
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TRANSAMINATION OF AROMATIC AMINO ACIDS IN RAT BRAIN.
    FONNUM F; HAAVALDSEN R; TANGEN O
    J Neurochem; 1964 Feb; 11():109-18. PubMed ID: 14125143
    [No Abstract]   [Full Text] [Related]  

  • 49. A method for the determination of 5-hydroxyindolyl-3-acetic acid in brain.
    Giacalone E; Valzelli L
    J Neurochem; 1966 Nov; 13(11):1265-6. PubMed ID: 5924671
    [No Abstract]   [Full Text] [Related]  

  • 50. A new method for separation and quantitative determination of metabolites of tryptamines in biological material.
    Iskrić S; Stancić L; Kveder S
    Clin Chim Acta; 1969 Sep; 25(3):435-40. PubMed ID: 5821481
    [No Abstract]   [Full Text] [Related]  

  • 51. Medical and ecological considerations of L-dopa and 5-HTP in seeds.
    Bell EA; Janzen DH
    Nature; 1971 Jan; 229(5280):136-7. PubMed ID: 4923106
    [No Abstract]   [Full Text] [Related]  

  • 52. Turnover of central biogenic amines in two-kidney, one-clip renal hypertensive rats.
    Chen CS; Shum AY; Hsu SC; Chen CF
    Neurosci Lett; 1986 Aug; 69(2):166-71. PubMed ID: 3093935
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Femtogram detection limits for biogenic amines using microbore HPLC with electrochemical detection.
    Caliguri EJ; Mefford IN
    Brain Res; 1984 Mar; 296(1):156-9. PubMed ID: 6201234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of picomole amounts of dopamine, noradrenaline, 3,4-dihydroxyphenylalanine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindolacetic acid in nervous tissue after one-step purification on Sephadex G-10, using high-performance liquid chromatography with a novel type of electrochemical detection.
    Westerink BH; Mulder TB
    J Neurochem; 1981 Apr; 36(4):1449-62. PubMed ID: 6167673
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The 5-HT 1A receptor agonist, 8-OH-DPAT, preferentially activates cell body 5-HT autoreceptors in rat brain in vivo.
    Hjorth S; Magnusson T
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Nov; 338(5):463-71. PubMed ID: 2469021
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A method for the estimation of the catecholamines and their metabolites in brain tissue.
    Crawford TB; Yates CM
    Br J Pharmacol; 1970 Jan; 38(1):56-71. PubMed ID: 5413291
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Correlation between high-performance liquid chromatography and automated fluorimetric methods for the determination of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid in nervous tissue and cerebrospinal fluid.
    Westerink BH
    J Chromatogr; 1982 Dec; 233():69-77. PubMed ID: 6186680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neurochemical applications of liquid chromatography with electrochemical detection.
    Kissinger PT; Bruntlett CS; Shoup RE
    Life Sci; 1981 Feb; 28(5):455-65. PubMed ID: 6163061
    [No Abstract]   [Full Text] [Related]  

  • 59. Effect of a transverse cerebral hemisection on 5-hydroxytryptamine metabolism in the rat brain.
    Bédard P; Carlsson A; Lindqvist M
    Naunyn Schmiedebergs Arch Pharmacol; 1972; 272(1):1-15. PubMed ID: 4257469
    [No Abstract]   [Full Text] [Related]  

  • 60. Monoamine changes in the brain of rats injected with L-5-hydroxytryptophan.
    Okada F; Saito Y; Fujieda T; Yamashita I
    Nature; 1972 Aug; 238(5363):355-6. PubMed ID: 4561851
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.