These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 426283)

  • 1. A new mass fragmentographic method for the simultaneous analysis of tryptophan, tryptamine, indole-3-acetic acid, serotonin, and 5-hydroxyindole-3-acetic acid in the same sample of rat brain.
    Artigas F; Gelpí E
    Anal Biochem; 1979 Jan; 92(1):233-42. PubMed ID: 426283
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparative ontogenesis of brain tryptamine, serotonin, and tryptophan.
    Artigas F; Suñol C; Tusell JM; Martínez E; Gelpí E
    J Neurochem; 1985 Jan; 44(1):31-7. PubMed ID: 2578059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatographic analysis of naturally fluorescing compounds. I. Rapid analysis of nanogram amounts of indoles in physiologic fluids.
    Chilcote DD; Mrochek JE
    Clin Chem; 1972 Aug; 18(8):778-82. PubMed ID: 4537821
    [No Abstract]   [Full Text] [Related]  

  • 4. Chromatographic separation of tryptophan metabolites.
    Bakri M; Carlson JR
    Anal Biochem; 1970 Mar; 34():46-65. PubMed ID: 5309711
    [No Abstract]   [Full Text] [Related]  

  • 5. Quantitation of tryptophan metabolites in rat feces by thin-layer chromatography.
    Anderson GM
    J Chromatogr; 1975 Feb; 105(2):323-8. PubMed ID: 1150778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass fragmentographic determination of 5-hydroxytryptamine and 5-hydroxyindole-3-acetic acid in brain tissue using deuterated internal standards.
    Beck O; Wiesel FA; Sedvall G
    J Chromatogr; 1977 Apr; 134(2):407-14. PubMed ID: 140179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive determination of deuterated and non-deuterated indole-3-acetic acid and 5-hydroxyindole-3-acetic acid by combined capillary gas chromatography-negative-ion chemical ionization mass spectrometry.
    Hayashi T; Naruse H; Matsuda F; Iida Y
    J Chromatogr; 1988 Jul; 428(2):209-19. PubMed ID: 2463990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of indoles by thin-layer chromatography and in situ fluorometry.
    Macneil JD; Häusler M; Frei RW; Hutzinger O
    Anal Biochem; 1972 Jan; 45(1):100-6. PubMed ID: 4536672
    [No Abstract]   [Full Text] [Related]  

  • 9. Histochemical demonstration of tryptamine. Properties of the formaldehyde-induced fluorophores of tryptamine and related indole compounds in models.
    Björklund A; Falck B; Håkanson R
    Acta Physiol Scand Suppl; 1968; 318():1-31. PubMed ID: 5737216
    [No Abstract]   [Full Text] [Related]  

  • 10. [Application of spectrofluorometry to the study of metabolism of methoxy-indoles].
    Dreux C; Bousquet B; Girard ML
    C R Acad Hebd Seances Acad Sci D; 1970 Aug; 271(5):541-4. PubMed ID: 4989909
    [No Abstract]   [Full Text] [Related]  

  • 11. Gas chromatography--mass fragmentographic determination of indole-3-acetic acid in rat brain.
    Warsh JJ; Chan PW; Godse DD; Coscina DV; Stancer HC
    J Neurochem; 1977 Dec; 29(6):955-8. PubMed ID: 599349
    [No Abstract]   [Full Text] [Related]  

  • 12. Indoles and auxins. VI. Separation of naturally occurring indoles into acidic, basic, amphoteric, and neutral fractions by ion-exchange chromatography.
    Raj RK; Hutzinger O
    Anal Biochem; 1970 Jan; 33(1):43-6. PubMed ID: 5413242
    [No Abstract]   [Full Text] [Related]  

  • 13. Adsorption of tryptophan metabolites from physiological fluids on XAD-2 and determination by single ion monitoring.
    Segura J; Artigas F; Martinez E; Gelpi E
    Biomed Mass Spectrom; 1976 Apr; 3(2):91-6. PubMed ID: 1268324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorimetric determination of biogenic 5-hydroxy- and 5-methoxyindoles by high-performance liquid chromatography using perchloric acid as post-column reagent.
    Hojo T; Nakamura H; Tamura Z
    J Chromatogr; 1982 Sep; 247(1):157-64. PubMed ID: 6183283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of lithium on the elevation of forebrain 5-hydroxyindoles by tryptophan.
    Collard KJ; Roberts MH
    Neuropharmacology; 1977 Oct; 16(10):671-73. PubMed ID: 593530
    [No Abstract]   [Full Text] [Related]  

  • 16. Simultaneous determination of tryptophan, serotonin and 5-hydroxyindoleacetic acid in rat brain by high-performance liquid chromatography using a weak acidic cation-exchange resin.
    Hori S; Ohtani K; Ohtani S; Kayanuma K; Ito T
    J Chromatogr; 1982 Aug; 231(1):161-5. PubMed ID: 6181085
    [No Abstract]   [Full Text] [Related]  

  • 17. Endogenous levels of tryptophan, serotonin and 5-hydroxyindole acetic acid in the developing brain of the cat.
    Daszuta A; Gaudin-Chazal G; Faudon M; Barrit MC; Ternaux JP
    Neurosci Lett; 1979 Feb; 11(2):187-92. PubMed ID: 460687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of indole-3-acetic acid, tryptophan and other indoles in must and wine by high-performance liquid chromatography with fluorescence detection.
    Mattivi F; Vrhovsek U; Versini G
    J Chromatogr A; 1999 Sep; 855(1):227-35. PubMed ID: 10514987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous determination of tryptamine and its metabolites in mouse brain by high-performance liquid chromatography with fluorometric detection.
    Yamada J; Sugimoto Y; Horisaka K
    J Chromatogr; 1984 Nov; 311(2):385-9. PubMed ID: 6520186
    [No Abstract]   [Full Text] [Related]  

  • 20. A new reagent for detecting tryptophan, indole, and indole-3-acetic acid in thin-layer chromatography.
    Boctor FN
    J Chromatogr; 1972 May; 67(2):371-2. PubMed ID: 5030901
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.