These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 4263006)

  • 21. Myocardial function and ultrastructure in chronically hypoxic rats.
    Maher JT; Goodman AL; Bowers WD; Hartley LH; Angelakos ET
    Am J Physiol; 1972 Nov; 223(5):1029-33. PubMed ID: 4654336
    [No Abstract]   [Full Text] [Related]  

  • 22. Contractile state of cardiac muscle obtained from cats with experimentally produced ventricular hypertrophy and heart failure.
    Spann JF; Buccino RA; Sonnenblick EH; Braunwald E
    Circ Res; 1967 Sep; 21(3):341-54. PubMed ID: 6061641
    [No Abstract]   [Full Text] [Related]  

  • 23. [Effect of nuredal on frequency of cardiac contractions, catecholamines and tolerance of rats to pressure chamber anoxia under conditions of varied altitude].
    Daniiarov SB; Zarif'ian AG
    Sov Zdravookhr Kirg; 1974; 1(0):3-10. PubMed ID: 4407600
    [No Abstract]   [Full Text] [Related]  

  • 24. Mechanical and biochemical correlates of cardiac hypertrophy.
    Alpert NR; Hamrell BB; Halpern W
    Circ Res; 1974 Aug; 35(2):suppl II:71-82. PubMed ID: 4276491
    [No Abstract]   [Full Text] [Related]  

  • 25. In-vitro studies of myocardial asynchrony and regional hypoxia.
    Tyberg JV; Parmley WW; Sonnenblick EH
    Circ Res; 1969 Nov; 25(5):569-79. PubMed ID: 5351325
    [No Abstract]   [Full Text] [Related]  

  • 26. [Effectiveness of training animals to adapt to hypoxia during sleep].
    Malkin VB; Landukhova NF
    Kosm Biol Aviakosm Med; 1984; 18(2):67-70. PubMed ID: 6716948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the contractile performance of the hypertrophied myocardium from spontaneous hypertensive rats and normotensive infarcted rats.
    Mill JG; Novaes MA; Galon M; Nogueira JB; Vassallo DV
    Can J Physiol Pharmacol; 1998 Apr; 76(4):387-94. PubMed ID: 9795747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Mechanism of body adaptation to altitude hypoxia and the problem of prophylaxis].
    Meerson FZ
    Patol Fiziol Eksp Ter; 1973; 17(3):7-15. PubMed ID: 4127376
    [No Abstract]   [Full Text] [Related]  

  • 29. [The effect of adaptation to the periodic action of high-altitude hypoxia on the emotional behavior of rats].
    Ustinova EE; Strekalova NV; Meerson FZ
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1989; 39(6):1112-5. PubMed ID: 2629396
    [No Abstract]   [Full Text] [Related]  

  • 30. [Role of the lysosome system in the preventive effect of adaptation to high-altitude hypoxia in heart diseases].
    Meerson FZ; Panchenko LF; Golubeva LIu; Liubimtseva ON; Portenko NG
    Kardiologiia; 1970 Jul; 10(7):71-9. PubMed ID: 5491674
    [No Abstract]   [Full Text] [Related]  

  • 31. [Ventricular contraction rate in natives of high altitudes].
    Gamboa R; Romero MA; Marticorena E
    Arch Inst Biol Andina; 1971; 4(1):15-8. PubMed ID: 4267607
    [No Abstract]   [Full Text] [Related]  

  • 32. [Changes in the systemic hemodynamics and the vascular bed of the skeletal muscles in rats adapted to hypoxia].
    Koshelev VB; Tarasova OS; Storozhevykh TP; Baranov VS; Pinelis VG; Rodionov IM
    Fiziol Zh SSSR Im I M Sechenova; 1991 Sep; 77(9):123-9. PubMed ID: 1666594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Growth of cardiac muscle cells during rat adaptation to altitude hypoxia].
    Aref'eva AM; Durova SI; Meerson FZ; BrodskiÄ­ VIa
    Tsitologiia; 1982 Dec; 24(12):1435-9. PubMed ID: 6218671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Formation of new microvessels in the skeletal muscles of rats subjected to hypobaric hypoxia for a week].
    Kondashevskaia MV; Koshelev VB; Rodionov IM
    Dokl Akad Nauk SSSR; 1984; 277(3):748-51. PubMed ID: 6208001
    [No Abstract]   [Full Text] [Related]  

  • 35. Effect of polycythemia and chronic hypoxia on heart mass in the chicken.
    Burton RR; Smith AH
    J Appl Physiol; 1967 Apr; 22(4):782-5. PubMed ID: 4225733
    [No Abstract]   [Full Text] [Related]  

  • 36. [The effect of L-arginine on the development of experimental cardiac hyperfunction and hypertrophy].
    Lahodych TS; Karvats'kyÄ­ IM; Shevchuk VH
    Fiziol Zh (1994); 2001; 47(2):46-51. PubMed ID: 11392114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Role of the connection between the force of contraction and the velocity of relaxation of the myocardium in the adaptation of the heart to increasing loads].
    Meerson FZ; Kapel'ko VI
    Kardiologiia; 1973 Feb; 13(2):19-30. PubMed ID: 4272855
    [No Abstract]   [Full Text] [Related]  

  • 38. Load dependence of mammalian heart relaxation during cardiac hypertrophy and heart failure.
    Lecarpentier Y; Martin JL; Gastineau P; Hatt PY
    Am J Physiol; 1982 May; 242(5):H855-61. PubMed ID: 6211103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Prevention of disorders of the electric stability of the heart in experimental infarct using adaptation to hypoxia].
    Ustinova EE; MeersonFZ
    Biull Eksp Biol Med; 1988 Apr; 105(4):401-3. PubMed ID: 3359014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cardiac energetics in short and long term hypertrophy induced by aortic coarctation.
    Coughlin P; Gibbs CL
    Cardiovasc Res; 1981 Nov; 15(11):623-31. PubMed ID: 6459848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.