These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 4264137)

  • 1. Interaction of divalent cations with the 55,000-dalton protein component of the sarcoplasmic reticulum. Studies of fluorescence and circular dichroism.
    Ikemoto N; Bhatnagar GM; Nagy B; Gergely J
    J Biol Chem; 1972 Dec; 247(23):7835-7. PubMed ID: 4264137
    [No Abstract]   [Full Text] [Related]  

  • 2. The Structural-Functional Crosstalk of the Calsequestrin System: Insights and Pathological Implications.
    Marabelli C; Santiago DJ; Priori SG
    Biomolecules; 2023 Nov; 13(12):. PubMed ID: 38136565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac calcium regulation in human induced pluripotent stem cell cardiomyocytes: Implications for disease modeling and maturation.
    Ernst P; Bidwell PA; Dora M; Thomas DD; Kamdar F
    Front Cell Dev Biol; 2022; 10():986107. PubMed ID: 36742199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive assembly of Ca2+ entry units in soleus muscle from calsequestrin knockout mice.
    Michelucci A; Pietrangelo L; Rastelli G; Protasi F; Dirksen RT; Boncompagni S
    J Gen Physiol; 2022 Dec; 154(12):. PubMed ID: 36222861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Store-Operated Calcium Entry in Skeletal Muscle: What Makes It Different?
    Lilliu E; Koenig S; Koenig X; Frieden M
    Cells; 2021 Sep; 10(9):. PubMed ID: 34572005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calsequestrin: a well-known but curious protein in skeletal muscle.
    Woo JS; Jeong SY; Park JH; Choi JH; Lee EH
    Exp Mol Med; 2020 Dec; 52(12):1908-1925. PubMed ID: 33288873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-terminal residues of skeletal muscle calsequestrin are essential for calcium binding and for skeletal ryanodine receptor inhibition.
    Beard NA; Dulhunty AF
    Skelet Muscle; 2015; 5():6. PubMed ID: 25861445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and structural characterization of a eurytolerant calsequestrin from the intertidal teleost Fundulus heteroclitus.
    Whittington AC; Nienow TE; Whittington CL; Fort TJ; Grove TJ
    PLoS One; 2012; 7(11):e50801. PubMed ID: 23226387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle.
    Manno C; Sztretye M; Figueroa L; Allen PD; Ríos E
    J Physiol; 2013 Jan; 591(2):423-42. PubMed ID: 23148320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interaction between calsequestrin and ryanodine receptor in the heart.
    Gaburjakova M; Bal NC; Gaburjakova J; Periasamy M
    Cell Mol Life Sci; 2013 Aug; 70(16):2935-45. PubMed ID: 23109100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lessons from calsequestrin-1 ablation in vivo: much more than a Ca(2+) buffer after all.
    Protasi F; Paolini C; Canato M; Reggiani C; Quarta M
    J Muscle Res Cell Motil; 2011 Dec; 32(4-5):257-70. PubMed ID: 22130610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional consequences of stably expressing a mutant calsequestrin (CASQ2D307H) in the CASQ2 null background.
    Kalyanasundaram A; Viatchenko-Karpinski S; Belevych AE; Lacombe VA; Hwang HS; Knollmann BC; Gyorke S; Periasamy M
    Am J Physiol Heart Circ Physiol; 2012 Jan; 302(1):H253-61. PubMed ID: 21984545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organellar calcium buffers.
    Prins D; Michalak M
    Cold Spring Harb Perspect Biol; 2011 Mar; 3(3):. PubMed ID: 21421925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell signaling pathways for the regulation of GATA4 transcription factor: Implications for cell growth and apoptosis.
    Suzuki YJ
    Cell Signal; 2011 Jul; 23(7):1094-9. PubMed ID: 21376121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat.
    Murphy RM; Larkins NT; Mollica JP; Beard NA; Lamb GD
    J Physiol; 2009 Jan; 587(2):443-60. PubMed ID: 19029185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conformation of calsequestrin determines its ability to regulate skeletal ryanodine receptors.
    Wei L; Varsányi M; Dulhunty AF; Beard NA
    Biophys J; 2006 Aug; 91(4):1288-301. PubMed ID: 16698782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation.
    Beard NA; Casarotto MG; Wei L; Varsányi M; Laver DR; Dulhunty AF
    Biophys J; 2005 May; 88(5):3444-54. PubMed ID: 15731387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels.
    Beard NA; Sakowska MM; Dulhunty AF; Laver DR
    Biophys J; 2002 Jan; 82(1 Pt 1):310-20. PubMed ID: 11751318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Troponin-T is a calcium-binding protein in insect muscle: in vivo phosphorylation, muscle-specific isoforms and developmental profile in Drosophila melanogaster.
    Domingo A; González-Jurado J; Maroto M; Díaz C; Vinós J; Carrasco C; Cervera M; Marco R
    J Muscle Res Cell Motil; 1998 May; 19(4):393-403. PubMed ID: 9635282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.