BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 42643)

  • 1. Phosphoenolpyruvate carboxylase of Escherichia coli. Affinity labeling with bromopyruvate.
    Kameshita I; Tokushige M; Izui K; Katsuki H
    J Biochem; 1979 Nov; 86(5):1251-7. PubMed ID: 42643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active-site-directed inhibition of phosphoenolpyruvate carboxylase from maize leaves by bromopyruvate.
    Gonzalez DH; Iglesias AA; Andreo CS
    Arch Biochem Biophys; 1986 Feb; 245(1):179-86. PubMed ID: 3947097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active site-directed modification of tryptophanase by 3-bromopyruvate.
    Honda T; Tokushige M
    J Biochem; 1985 Mar; 97(3):851-7. PubMed ID: 3894342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of pigeon liver malic enzyme: kinetics, specificity, and half-site stoichiometry of the alkylation of a cysteinyl residue by the substrate-inhibitor bromopyruvate.
    Chang GG; Hsu RY
    Biochemistry; 1977 Jan; 16(2):311-20. PubMed ID: 13810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoenolpyruvate carboxylase of Escherichia coli. The role of lysyl residues in the catalytic and regulatory functions.
    Naide A; Izui K; Yoshinaga T; Katsuki H
    J Biochem; 1979 Feb; 85(2):423-32. PubMed ID: 370110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bromopyruvate as an active-site-directed inhibitor of the pyruvate dehydrogenase multienzyme complex from Escherichia coli.
    Lowe PN; Perham RN
    Biochemistry; 1984 Jan; 23(1):91-7. PubMed ID: 6362725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active-site residues of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli. Bromopyruvate inactivation and labeling of glutamate 45.
    Vlahos CJ; Dekker EE
    J Biol Chem; 1990 Nov; 265(33):20384-9. PubMed ID: 1978721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli pyruvate dehydrogenase complex. Thiamin pyrophosphate-dependent inactivation by 3-bromopyruvate.
    Apfel MA; Ikeda BH; Speckhard DC; Frey PA
    J Biol Chem; 1984 Mar; 259(5):2905-9. PubMed ID: 6365919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkylation of isocitrate lyase from Escherichia coli by 3-bromopyruvate.
    Ko YH; McFadden BA
    Arch Biochem Biophys; 1990 May; 278(2):373-80. PubMed ID: 2183722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoenol-3-bromopyruvate. A mechanism-based inhibitor of phosphoenolpyruvate carboxylase from maize.
    O'Leary MH; Diaz E
    J Biol Chem; 1982 Dec; 257(24):14603-5. PubMed ID: 7174654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromopyruvate inactivation of glutamate apodecarboxylase. Kinetics and specificity.
    Fonda ML
    J Biol Chem; 1976 Jan; 251(1):229-35. PubMed ID: 1244350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoenolpyruvate carboxylase of Escherichia coli. Effect of proteolytic modification on the catalytic and regulatory propties.
    Kameshita I; Izui K; Katsuki H
    J Biochem; 1979 Jul; 86(1):1-10. PubMed ID: 383705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. o-Phthalaldehyde as a probe in the active site of phosphoenolpyruvate carboxylase.
    Maralihalli GB; Bhagwat AS
    Indian J Biochem Biophys; 1990 Jun; 27(3):141-5. PubMed ID: 2387597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis.
    Salleh HM; Patel MA; Woodard RW
    Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity labeling of chicken liver fatty acid synthase with chloroacetyl-CoA and bromopyruvate.
    Tian WX; Wang YS; Hsu RY
    Biochim Biophys Acta; 1989 Oct; 998(3):310-6. PubMed ID: 2804133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of substrate and effector binding sites of phosphoenolpyruvate carboxylase from Crassula argentea. A possible role of phosphoenolpyruvate as substrate and activator.
    Rustin P; Meyer CR; Wedding RT
    J Biol Chem; 1988 Nov; 263(33):17611-4. PubMed ID: 3182864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modifications of Serratia marcescens anthranilate synthase component I.
    Tso JY; Zalkin H
    J Biol Chem; 1981 Oct; 256(19):9901-8. PubMed ID: 7024274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoenolpyruvate carboxylase of Escherichia coli. Inhibition by various analogs and homologs of phosphoenolpyruvate.
    Izui K; Matsuda Y; Kameshita I; Katsuki H; Woods AE
    J Biochem; 1983 Dec; 94(6):1789-95. PubMed ID: 6368527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoenolpyruvate carboxylase of Escherichia coli. Essential arginyl residues for catalytic and regulatory functions.
    Kameshita I; Tokushige M; Katsuki H
    J Biochem; 1978 Oct; 84(4):795-803. PubMed ID: 361729
    [No Abstract]   [Full Text] [Related]  

  • 20. Phosphoenolpyruvate carboxylase of Escherichia coli K-12. N- and C-terminal sequences and tentative assignment of the catalytically essential cysteine residue.
    Ishijima S; Izui K; Katsuki H
    J Biochem; 1986 May; 99(5):1299-310. PubMed ID: 3519602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.