These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 426470)
1. Cortical activation pattern during saccadic eye movements in humans: localization by focal cerebral blood flow increases. Melamed E; Larsen B Ann Neurol; 1979 Jan; 5(1):79-88. PubMed ID: 426470 [TBL] [Abstract][Full Text] [Related]
2. Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging. Darby DG; Nobre AC; Thangaraj V; Edelman R; Mesulam MM; Warach S Neuroimage; 1996 Feb; 3(1):53-62. PubMed ID: 9345475 [TBL] [Abstract][Full Text] [Related]
3. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570 [TBL] [Abstract][Full Text] [Related]
4. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. Fox PT; Fox JM; Raichle ME; Burde RM J Neurophysiol; 1985 Aug; 54(2):348-69. PubMed ID: 3875696 [TBL] [Abstract][Full Text] [Related]
5. Intracerebral dynamics of saccade generation in the human frontal eye field and supplementary eye field. Lachaux JP; Hoffmann D; Minotti L; Berthoz A; Kahane P Neuroimage; 2006 May; 30(4):1302-12. PubMed ID: 16412667 [TBL] [Abstract][Full Text] [Related]
6. Parametric modulation of cortical activation during smooth pursuit with and without target blanking. an fMRI study. Nagel M; Sprenger A; Zapf S; Erdmann C; Kömpf D; Heide W; Binkofski F; Lencer R Neuroimage; 2006 Feb; 29(4):1319-25. PubMed ID: 16216531 [TBL] [Abstract][Full Text] [Related]
7. Frequency variation of a pattern-flash visual stimulus during PET differentially activates brain from striate through frontal cortex. Mentis MJ; Alexander GE; Grady CL; Horwitz B; Krasuski J; Pietrini P; Strassburger T; Hampel H; Schapiro MB; Rapoport SI Neuroimage; 1997 Feb; 5(2):116-28. PubMed ID: 9345542 [TBL] [Abstract][Full Text] [Related]
8. Cortical processing of visual and tactile stimuli studied by non-invasive rCBF measurements. Risberg J; Prohovnik I Hum Neurobiol; 1983; 2(1):5-10. PubMed ID: 6874439 [TBL] [Abstract][Full Text] [Related]
9. Effector-specific fields for motor preparation in the human frontal cortex. Connolly JD; Goodale MA; Cant JS; Munoz DP Neuroimage; 2007 Feb; 34(3):1209-19. PubMed ID: 17134914 [TBL] [Abstract][Full Text] [Related]
10. Increased activation of frontal areas during arm movement in idiopathic torsion dystonia. Playford ED; Passingham RE; Marsden CD; Brooks DJ Mov Disord; 1998 Mar; 13(2):309-18. PubMed ID: 9539346 [TBL] [Abstract][Full Text] [Related]
12. Visuomotor transformations for reaching to memorized targets: a PET study. Lacquaniti F; Perani D; Guigon E; Bettinardi V; Carrozzo M; Grassi F; Rossetti Y; Fazio F Neuroimage; 1997 Feb; 5(2):129-46. PubMed ID: 9345543 [TBL] [Abstract][Full Text] [Related]
13. Different cortical areas in man in organization of voluntary movements in extrapersonal space. Roland PE; Skinhøj E; Lassen NA; Larsen B J Neurophysiol; 1980 Jan; 43(1):137-50. PubMed ID: 7351548 [TBL] [Abstract][Full Text] [Related]
14. fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Dieterich M; Bense S; Stephan T; Yousry TA; Brandt T Exp Brain Res; 2003 Jan; 148(1):117-27. PubMed ID: 12478402 [TBL] [Abstract][Full Text] [Related]
15. The role of the human dorsolateral prefrontal cortex in ocular motor behavior. Pierrot-Deseilligny Ch; Müri RM; Nyffeler T; Milea D Ann N Y Acad Sci; 2005 Apr; 1039():239-51. PubMed ID: 15826978 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional cytoarchitectonic analysis of the posterior bank of the human precentral sulcus. Schmitt O; Modersitzki J; Heldmann S; Wirtz S; Hömke L; Heide W; Kömpf D; Wree A Anat Embryol (Berl); 2005 Dec; 210(5-6):387-400. PubMed ID: 16177908 [TBL] [Abstract][Full Text] [Related]
17. The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. Gould HJ; Cusick CG; Pons TP; Kaas JH J Comp Neurol; 1986 May; 247(3):297-325. PubMed ID: 3722441 [TBL] [Abstract][Full Text] [Related]
18. Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements. Meyer BU; Diehl R; Steinmetz H; Britton TC; Benecke R Electroencephalogr Clin Neurophysiol Suppl; 1991; 43():121-34. PubMed ID: 1773752 [TBL] [Abstract][Full Text] [Related]
19. Left-right cortical asymmetries of regional cerebral blood flow during listening to words. Nishizawa Y; Olsen TS; Larsen B; Lassen NA J Neurophysiol; 1982 Aug; 48(2):458-66. PubMed ID: 7119857 [TBL] [Abstract][Full Text] [Related]
20. Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. Dieterich M; Bucher SF; Seelos KC; Brandt T Brain; 1998 Aug; 121 ( Pt 8)():1479-95. PubMed ID: 9712010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]