These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Transport of mono- and divalent cations across chloroplast membranes mediated by the lonophore A23187. Ben-Hayyim G; Krause GH Arch Biochem Biophys; 1980 Jul; 202(2):546-57. PubMed ID: 6779707 [No Abstract] [Full Text] [Related]
7. Ion transport by heart mitochondria. The effects of Cu 2+ on membrane permeability. Hwang KM; Scott KM; Brierley GP Arch Biochem Biophys; 1972 Jun; 150(2):746-56. PubMed ID: 4261416 [No Abstract] [Full Text] [Related]
8. Probing membrane transport mechanisms with inophores. Harold FM; Altendorf KH; Hirata H Ann N Y Acad Sci; 1974 May; 235(0):149-60. PubMed ID: 4527943 [No Abstract] [Full Text] [Related]
9. Removal of the outer membrane from brain mitochondria. Watanabe H J Biochem; 1971 Feb; 69(2):275-81. PubMed ID: 4323881 [No Abstract] [Full Text] [Related]
10. II. Effect of ionophorous antibiotics in chlorplasts. Shavit N; Degani H; San Pietro A Biochim Biophys Acta; 1970 Aug; 216(1):208-19. PubMed ID: 5497185 [No Abstract] [Full Text] [Related]
11. Translocation of protons and potassium ions across the mitochondrial membrane of respiring and respiration-deficient yeasts. Kovac L; Groot GS; Racker E Biochim Biophys Acta; 1972 Jan; 256(1):55-65. PubMed ID: 4550631 [No Abstract] [Full Text] [Related]
12. Model translocators for divalent and monovalent ion transport in phospholipid membranes. I. The ion permeability induced in lipid bilayers by the antibiotic X-537A. Célis H; Estrada S; Montal M J Membr Biol; 1974; 18(2):187-99. PubMed ID: 4421692 [No Abstract] [Full Text] [Related]
13. [Ion transport and electrical potential of mitochondrial membranes]. Liberman EA; Topaly VP; Tsofina LM; Iasaĭtis AA; Skulachev VP Biokhimiia; 1969; 34(5):1083-7. PubMed ID: 5364621 [No Abstract] [Full Text] [Related]
15. Roles for metal ions in the hydrolysis of adenosine triphosphate by the 13S coupling factors of bacterial and mitochondrial oxidative phosphorylation. Adolfsen R; Moudrianakis EN Biochemistry; 1973 Jul; 12(15):2926-33. PubMed ID: 4268905 [No Abstract] [Full Text] [Related]
16. Resolution of the repeating unit of the inner mitochondrial membrane. Kopaczyk K; Asai J; Allmann DW; Oda T; Green DE Arch Biochem Biophys; 1968 Mar; 123(3):602-21. PubMed ID: 4231295 [No Abstract] [Full Text] [Related]
17. The ATPase activity of Jerusalem-artichoke mitochondria and submitochondrial particles. Passam HC; Palmer JM Biochim Biophys Acta; 1973 Apr; 305(1):80-7. PubMed ID: 4268943 [No Abstract] [Full Text] [Related]
18. Phosphorylation coupled to oxidation of thiol groups (GSH) by cytochrome c with disulfide (GSSG) as an essential catalyst. 3. Uncoupling and uncoupler-dependent ATPase. Painter AA; Hunter FE Biochem Biophys Res Commun; 1970 Jul; 40(2):378-86. PubMed ID: 4097521 [No Abstract] [Full Text] [Related]
19. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Bakeeva LE; Grinius LL; Jasaitis AA; Kuliene VV; Levitsky DO; Liberman EA; Severina II; Skulachev VP Biochim Biophys Acta; 1970 Aug; 216(1):13-21. PubMed ID: 4250571 [No Abstract] [Full Text] [Related]
20. Cationic uncouplers of oxidative phosphorylation are inducers of mitochondrial permeability transition. Shinohara Y; Bandou S; Kora S; Kitamura S; Inazumi S; Terada H FEBS Lett; 1998 May; 428(1-2):89-92. PubMed ID: 9645482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]