These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4265455)

  • 1. Endocytosis by erythrocyte ghosts; dependence upon ATP hydrolysis.
    Penniston JT
    Arch Biochem Biophys; 1972 Nov; 153(1):410-2. PubMed ID: 4265455
    [No Abstract]   [Full Text] [Related]  

  • 2. Energy dependent endocytosis by erythrocyte ghosts. V. Effects of neuraminidase and pronase digestion.
    Hayashi H; Penniston JT
    Biochem Biophys Res Commun; 1974 Nov; 61(1):1-7. PubMed ID: 4280306
    [No Abstract]   [Full Text] [Related]  

  • 3. Energy-dependent endocytosis in erythrocyte ghosts. 3. Hydrophobic character of maleimide inactivation sites of ATPase and of endocytosis.
    Hayashi H; Penniston JT
    Arch Biochem Biophys; 1973 Nov; 159(1):563-9. PubMed ID: 4274088
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of cholesterol oxidation on (Na+, K+) ATPase activity of erythrocyte membranes.
    Seiler D; Fiehn W
    Experientia; 1976; 32(7):849-50. PubMed ID: 133810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein conformational transitions in the erythrocyte membrane.
    Graham JM; Wallach DF
    Biochim Biophys Acta; 1971 Jul; 241(1):180-94. PubMed ID: 4256590
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of nervous active drugs on MG ++ -dependent ATPase in erythrocyte membrane.
    Mircevová L; Simonová A
    Arch Int Physiol Biochim; 1971 Dec; 79(5):903-16. PubMed ID: 4112721
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of inclusion of Ca 2+ , Mg 2+ , EDTA or EGTA during the preparation of erythrocyte ghosts by hypotonic haemolysis.
    Bramley TA; Coleman R
    Biochim Biophys Acta; 1972 Dec; 290(1):219-28. PubMed ID: 4264467
    [No Abstract]   [Full Text] [Related]  

  • 8. Ca 2+ -activated membrane ATPase: selective inhibition by ruthenium red.
    Watson EL; Vincenzi FF; Davis PW
    Biochim Biophys Acta; 1971 Dec; 249(2):606-10. PubMed ID: 4257327
    [No Abstract]   [Full Text] [Related]  

  • 9. Changes in erythrocyte membranes during preparation, as expressed by ATPase activity.
    Hanahan DJ; Ekholm J
    Biochim Biophys Acta; 1972 Jan; 255(1):413-9. PubMed ID: 4258776
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of human red cell Nak-ATPase by magnesium and potassium.
    Bond GH; Hudgins PM
    Biochem Biophys Res Commun; 1975 Sep; 66(2):645-50. PubMed ID: 126686
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of monovalent cations on the (Mg 2+ + Ca 2+ )-dependent ATPase of the red cell membrane.
    Bond GH; Green JW
    Biochim Biophys Acta; 1971 Aug; 241(2):393-8. PubMed ID: 4258480
    [No Abstract]   [Full Text] [Related]  

  • 12. Ultrastructural changes of erythrocyte ghosts having no connection with hydrolysis of ATP.
    Katsumata Y; Asai J
    Arch Biochem Biophys; 1972 May; 150(1):330-2. PubMed ID: 5028080
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on ATPase in sheared micro vesicles of human erythrocyte membranes.
    Schrier SL; Giberman E; Danon D; Katchalski E
    Biochim Biophys Acta; 1970; 196(2):263-73. PubMed ID: 4244308
    [No Abstract]   [Full Text] [Related]  

  • 14. Relative deficiency of Ca2 plus-dependent adenosine triphosphatase activity of red cell membranes in hereditary spherocytosis.
    Feig SA; Guidotti G
    Biochem Biophys Res Commun; 1974 May; 58(2):487-94. PubMed ID: 4276124
    [No Abstract]   [Full Text] [Related]  

  • 15. Lipid requirement of membrane-bound ATPase. Studies on human erythrocyte ghosts.
    Roelofsen B; van Deenen LL
    Eur J Biochem; 1973 Dec; 40(1):245-57. PubMed ID: 4272541
    [No Abstract]   [Full Text] [Related]  

  • 16. Biochemical variability of human erythrocyte membrane preparations, as demonstrated by sodium-potassium-magnesium and calcium adenosine triphosphatase activities.
    Hanahan DJ; Ekholm J; Hildenbrandt G
    Biochemistry; 1973 Mar; 12(7):1374-87. PubMed ID: 4266755
    [No Abstract]   [Full Text] [Related]  

  • 17. Variability in ouabain-induced inhibition of human erythrocyte membrane (Na+ K+)-ATPase.
    Schrier SL; Giberman E; Katchalski E
    Biochim Biophys Acta; 1969 Jul; 183(2):397-400. PubMed ID: 4239999
    [No Abstract]   [Full Text] [Related]  

  • 18. Demonstration of two ATPases in human erythrocyte membranes.
    Gröschel-Stewart U
    Experientia; 1969 Jun; 25(6):601-2. PubMed ID: 4240598
    [No Abstract]   [Full Text] [Related]  

  • 19. Kinetics of (Na + ,K + )-ATPase of human erythrocyte membranes. II. Inhibition by ouabain.
    Wolf HU; Peter HW
    Biochim Biophys Acta; 1972 Dec; 290(1):310-20. PubMed ID: 4264470
    [No Abstract]   [Full Text] [Related]  

  • 20. (Ca 2+ + Mg 2+ )-activated membrane ATPases in human red cells and their possible relations to cation transport.
    Schatzmann HJ; Rossi GL
    Biochim Biophys Acta; 1971 Aug; 241(2):379-92. PubMed ID: 4258479
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.