These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4267300)

  • 1. Substrate regulation of membrane phosphorylation and of Ca 2+ transport in the sarcoplasmic reticulum.
    de Meis L; Fialho de Mello MC
    J Biol Chem; 1973 May; 248(10):3691-701. PubMed ID: 4267300
    [No Abstract]   [Full Text] [Related]  

  • 2. Adenosine triphosphatase activities of muscle sarcolemma.
    Sulakhe PV; Drummond GI; Ng DC
    J Biol Chem; 1973 Jun; 248(12):4158-62. PubMed ID: 4268121
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of ryanodine on skeletal muscle reticulum calcium adenosine triphosphatase (CaATPase).
    Fairhurst AS
    Biochem Pharmacol; 1973 Nov; 22(22):2815-27. PubMed ID: 4271525
    [No Abstract]   [Full Text] [Related]  

  • 4. [Ability of nucleoside triphosphates to provide for Ca 2+ transport by sarcoplasmic reticulum fragments].
    Lushchak VI
    Ukr Biokhim Zh (1978); 1990; 62(2):64-9. PubMed ID: 2142350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcoplasmic reticulum. XIV. Acetylphosphate and carbamylphosphate as energy sources for Ca++ transport.
    Pucell A; Martonosi A
    J Biol Chem; 1971 May; 246(10):3389-97. PubMed ID: 4324900
    [No Abstract]   [Full Text] [Related]  

  • 6. Transient-state kinetic studies on the mechanism of furylacryloylphosphatase-coupled calcium ion transport with sarcoplasmic reticulum adenosine triphosphatase.
    Kurzmack M; Inesi G; Tal N; Bernhard SA
    Biochemistry; 1981 Feb; 20(3):486-91. PubMed ID: 6452157
    [No Abstract]   [Full Text] [Related]  

  • 7. Interference of nucleoside diphosphates and inorganic phosphate with nucleoside-triphosphate-dependent calcium fluxes and calcium-dependent nucleoside-triphosphate hydrolysis in membranes of sarcoplasmic-reticulum vesicles.
    Waas W; Hasselbach W
    Eur J Biochem; 1981 Jun; 116(3):601-8. PubMed ID: 7262078
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate.
    Winkler F; Suko J
    Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259
    [No Abstract]   [Full Text] [Related]  

  • 9. Calcium and magnesium regulation of phosphorylation by ATP and ITP in sarcoplasmic reticulum vesicles.
    Souza DO; de Meis L
    J Biol Chem; 1976 Oct; 251(20):6355-9. PubMed ID: 185211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cycle for ouabain inhibition of sodium- and potassium-dependent adenosine triphosphatase.
    Sen AK; Tobin T
    J Biol Chem; 1969 Dec; 244(24):6596-604. PubMed ID: 4243425
    [No Abstract]   [Full Text] [Related]  

  • 11. Ca-2+-dependent inhibitory effects of Na+ and K+ on Ca-2+ transport in sarcoplasmic reticulum vesicles.
    Gattass CR; De Meis L
    Biochim Biophys Acta; 1975 May; 389(3):506-15. PubMed ID: 804935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between ATP-supported and GTP-supported phosphate turnover of the calcium-transporting sarcoplasmic reticulum membranes.
    Ronzani N; Migala A; Hasselbach W
    Eur J Biochem; 1979 Nov; 101(2):593-606. PubMed ID: 160316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of the membranous protein of the sarcoplasmic reticulum. Inhibition by Na + and K + .
    De Meis L
    Biochemistry; 1972 Jun; 11(13):2460-5. PubMed ID: 4261141
    [No Abstract]   [Full Text] [Related]  

  • 14. The inhibition by beta-adrenoceptor blocking agents of calcium uptake into and efflux from isolated sarcoplasmic vesicles.
    Temple DM; Hasselbach W; Makinose M
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(2):187-94. PubMed ID: 4153127
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of halothane on the stability of Ca2+ transport activity of isolated fragmented sarcoplasmic reticulum.
    Diamond EM; Berman MC
    Biochem Pharmacol; 1980 Feb; 29(3):375-81. PubMed ID: 6444817
    [No Abstract]   [Full Text] [Related]  

  • 16. Mg2+ and Mn2+ modulation of Ca2+ transport and ATPase activity in sarcoplasmic reticulum vesicles.
    Chiesi M; Inesi G
    Arch Biochem Biophys; 1981 May; 208(2):586-92. PubMed ID: 6455090
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of the calcium pump of cardiac sarcoplasmic reticulum. Interactive roles of potassium and ATP on the phosphoprotein intermediate of the (K+,Ca2+)-ATPase.
    Jones LR; Besch HR; Watanabe AM
    J Biol Chem; 1978 Mar; 253(5):1643-53. PubMed ID: 146716
    [No Abstract]   [Full Text] [Related]  

  • 18. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum.
    Berman MC; McIntosh DB; Kench JE
    J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J; Hasselbach W
    Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of quench reagents for resolution of single transport cycles in sarcoplasmic reticulum.
    Chiesi M; Inesi G
    J Biol Chem; 1979 Oct; 254(20):10370-7. PubMed ID: 158594
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.