These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 4267958)
1. The role of phospholipids in the binding of ouabain to sodium- and potassium-dependent adenosine triphosphatase. Taniguchi K; Iida S Mol Pharmacol; 1973 May; 9(3):350-9. PubMed ID: 4267958 [No Abstract] [Full Text] [Related]
2. Ouabain binding to sodium- and potassium-dependent adenosine triphosphatase: inhibition by the , -methylene analogue of adenosine triphosphate. Tobin T; Akera T; Hogg RE; Brody TM Mol Pharmacol; 1973 Mar; 9(2):278-81. PubMed ID: 4268124 [No Abstract] [Full Text] [Related]
3. Sodium-potassium-activated adenosine triphosphatase. IX. The role of phospholipids. Goldman SS; Albers RW J Biol Chem; 1973 Feb; 248(3):867-74. PubMed ID: 4346355 [No Abstract] [Full Text] [Related]
4. Association and dissociation rate constants of the complexes between various cardiac aglycones and sodium- and potassium-dependent adenosine triphosphatase formed in the presence of magnesium and phosphate. Yoda A; Yoda S Mol Pharmacol; 1977 Mar; 13(2):352-61. PubMed ID: 140301 [No Abstract] [Full Text] [Related]
5. Structue-activity relationships of cardiotonic steroids for the inhibition of sodium- and potassium-dependent adenosine triphosphatase. I. Dissociation rate constants of various enzyme-cardiac glycoside complexes formed in the presence of magnesium and phosphate. Yoda A Mol Pharmacol; 1973 Jan; 9(1):51-60. PubMed ID: 4265446 [No Abstract] [Full Text] [Related]
6. The nature of the transport adenosine triphosphatase-digitalis complex. VII. Characteristics of ouabagenin-Na+,K+-adenosine triphosphatase interaction. Wallick ET; Dowd F; Allen JC; Schwartz A J Pharmacol Exp Ther; 1974 May; 189(2):434-44. PubMed ID: 4275234 [No Abstract] [Full Text] [Related]
7. Inhibition of calf brain membranal sodium- and potassium-dependent adenosine triphosphatase by cardioactive sterols. A binding site model. Wilson WE; Sivitz WI; Hanna LT Mol Pharmacol; 1970 Sep; 6(5):449-59. PubMed ID: 4248266 [No Abstract] [Full Text] [Related]
8. Inhibitory sites on sodium- and potassium-activated adenosine triphosphatase for chlorpromazine free radical and ouabain. Akera T; Brody TM Mol Pharmacol; 1970 Sep; 6(5):557-66. PubMed ID: 4248267 [No Abstract] [Full Text] [Related]
9. The binding of ouabain to Na + -K + -dependent ATPase treated with phospholipase. Taniguchi K; Iida S Biochim Biophys Acta; 1971 Jun; 233(3):831-3. PubMed ID: 4329761 [No Abstract] [Full Text] [Related]
10. Inhibition of sodium- and potassium-dependent adenosine triphosphatase by N-ethylmaleimide. II. Effects of sodium-activated transphosphorylation. Banerjee SP; Wong SM; Sen AK Mol Pharmacol; 1972 Jan; 8(1):18-29. PubMed ID: 4258646 [No Abstract] [Full Text] [Related]
11. Calcium ion and sodium- and potassium-dependent adenosine triphosphatase: its mechanism of inhibition and identification of the E 1 -P intermediate. Tobin T; Akera T; Baskin SI; Brody TM Mol Pharmacol; 1973 May; 9(3):336-49. PubMed ID: 4267957 [No Abstract] [Full Text] [Related]
12. The nature of the transport ATPase-digitalis complex. 3. Rapid binding studies and effects of ligands on the formation and stability of magnesium plus phosphate-induced glycoside-enzyme complex. Van Winkle WB; Allen JC; Schwartz A Arch Biochem Biophys; 1972 Jul; 151(1):85-92. PubMed ID: 4261465 [No Abstract] [Full Text] [Related]
13. The binding of tritiated ouabain to sodium- and potassium-activated adenosine triphosphatase and cardiac relaxing system of perfused dog heart. Allen JC; Besch HR; Glick G; Schwartz A Mol Pharmacol; 1970 Jul; 6(4):441-3. PubMed ID: 4246826 [No Abstract] [Full Text] [Related]
14. Role of phospholipid in the activation of Na+, Ka+-activated adenosine triphosphatase of beef brain. Tanaka R; Strickland KP Arch Biochem Biophys; 1965 Sep; 111(3):583-92. PubMed ID: 4222275 [No Abstract] [Full Text] [Related]
15. Ouabain binding to the sodium pump. Chipperfield AR; Whittam R Nature; 1973 Mar; 242(5392):62-3. PubMed ID: 4266529 [No Abstract] [Full Text] [Related]
16. Effect of potassium on the conformational state of the complex of ouabain with sodium- and potassium-dependent adenosine triphosphatase. Akera T; Tobin T; Gatti A; Shieh IS; Brody TM Mol Pharmacol; 1974 May; 10(3):509-18. PubMed ID: 4277460 [No Abstract] [Full Text] [Related]
17. Preparation of a oubain-binding membrane fraction form brain. Harris WE; Stahl WL; Swanson PD Biochim Biophys Acta; 1971 Oct; 249(1):333-8. PubMed ID: 4334756 [No Abstract] [Full Text] [Related]
18. Structure-activity relationships of cardiotonic steroids for the inhibition of sodium- and potassium-dependent adenosine triphosphatase. 3. Dissociation rate constants of various enzyme-cardiac glycoside complexes formed in the presence of sodium, magnesium, and adenosine triphosphate. Yoda A; Yoda S Mol Pharmacol; 1974 May; 10(3):494-500. PubMed ID: 4277671 [No Abstract] [Full Text] [Related]
19. Activation energy and phospholipid requirements of membrane-bound adenosine triphosphatases. Charnock JS; Cook DA; Almeida AF; To R Arch Biochem Biophys; 1973 Nov; 159(1):393-9. PubMed ID: 4274086 [No Abstract] [Full Text] [Related]
20. Inhibition of sodium- and potassium-dependent adenosine triphosphatase by N-ethylmaleimide. I. Effects on sodium-sensitive phosphorylation and potassium-sensitive dephosphorylation. Banerjee SP; Wong SM; Khanna VK; Sen AK Mol Pharmacol; 1972 Jan; 8(1):8-17. PubMed ID: 4258649 [No Abstract] [Full Text] [Related] [Next] [New Search]