These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 426812)
21. Effect of hydration on the stability of the collagen-like triple-helical structure of [4(R)-hydroxyprolyl-4(R)-hydroxyprolylglycine]10. Kawahara K; Nishi Y; Nakamura S; Uchiyama S; Nishiuchi Y; Nakazawa T; Ohkubo T; Kobayashi Y Biochemistry; 2005 Dec; 44(48):15812-22. PubMed ID: 16313184 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of poly(Pro-Hyp-Gly)(n) by direct poly-condensation of (Pro-Hyp-Gly)(n), where n=1, 5, and 10, and stability of the triple-helical structure. Kishimoto T; Morihara Y; Osanai M; Ogata S; Kamitakahara M; Ohtsuki C; Tanihara M Biopolymers; 2005 Oct; 79(3):163-72. PubMed ID: 16094625 [TBL] [Abstract][Full Text] [Related]
23. Structural consequences of D-amino acids in collagen triple-helical peptides. Shah NK; Brodsky B; Kirkpatrick A; Ramshaw JA Biopolymers; 1999 Apr; 49(4):297-302. PubMed ID: 10079768 [TBL] [Abstract][Full Text] [Related]
24. Cyclotriveratrylene (CTV) as a new chiral triacid scaffold capable of inducing triple helix formation of collagen peptides containing either a native sequence or Pro-Hyp-Gly repeats. Rump ET; Rijkers DT; Hilbers HW; de Groot PG; Liskamp RM Chemistry; 2002 Oct; 8(20):4613-21. PubMed ID: 12362398 [TBL] [Abstract][Full Text] [Related]
25. Unexpected puckering of hydroxyproline in the guest triplets, hyp-pro-gly and pro-allohyp-gly sandwiched between pro-pro-gly sequence. Jiravanichanun N; Hongo C; Wu G; Noguchi K; Okuyama K; Nishino N; Silva T Chembiochem; 2005 Jul; 6(7):1184-7. PubMed ID: 15929160 [No Abstract] [Full Text] [Related]
26. A model for the triple-helical structure of (Pro-Hyp-Gly)10 involving a cis peptide bond and inter-chain hydrogen-bonding to the hydroxyl group of hydroxyproline. Berg RA; Kishida Y; Kobayashi Y; Inouye K; Tonelli AE; Sakakibara S; Prockop DJ Biochim Biophys Acta; 1973 Dec; 328(2):553-9. PubMed ID: 4776459 [No Abstract] [Full Text] [Related]
28. Optical rotatory dispersion and circular dichroism. LXXV. Circular dichroism of some aryl-amino acids. Klyne W; Scopes PM; Thomas RN; Dahn H Helv Chim Acta; 1971; 54(8):2420-30. PubMed ID: 5141425 [No Abstract] [Full Text] [Related]
29. Conformational effects of Gly-X-Gly interruptions in the collagen triple helix. Bella J; Liu J; Kramer R; Brodsky B; Berman HM J Mol Biol; 2006 Sep; 362(2):298-311. PubMed ID: 16919298 [TBL] [Abstract][Full Text] [Related]
30. Effects of glycosylated (2S,4R)-hydroxyproline on the stability and assembly of collagen triple helices. Huang PW; Chang JM; Horng JC Amino Acids; 2016 Dec; 48(12):2765-2772. PubMed ID: 27522650 [TBL] [Abstract][Full Text] [Related]
31. Synthesis, circular dichroism spectra, and immunological properties of the sequential polypeptide, poly(Tyr-Ala-Glu-Gly). Zeiger AR; Maurer PH Biochemistry; 1977 Aug; 16(16):3514-8. PubMed ID: 560861 [No Abstract] [Full Text] [Related]
32. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent. Goyal B; Srivastava KR; Durani S J Pept Sci; 2017 Jun; 23(6):431-437. PubMed ID: 28425159 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and conformations of periodic copolypeptides of L-alanine and Glycine. Brack A; Spach G Biopolymers; 1972 Mar; 11(3):563-86. PubMed ID: 5016117 [No Abstract] [Full Text] [Related]
34. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides. Yang W; Battineni ML; Brodsky B Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687 [TBL] [Abstract][Full Text] [Related]
35. Is glycine a surrogate for a D-amino acid in the collagen triple helix? Horng JC; Kotch FW; Raines RT Protein Sci; 2007 Feb; 16(2):208-15. PubMed ID: 17189476 [TBL] [Abstract][Full Text] [Related]
36. [Two types of tripeptide conformation in collagen. Calculation of the structure of (Gly-Pro-Ser)n and (Gly-Val-Hyp)n polytripeptides]. Abagyan RA; Tumanian VG; Esipova NG Bioorg Khim; 1984 Apr; 10(4):476-82. PubMed ID: 6548632 [TBL] [Abstract][Full Text] [Related]
37. Identification of Collagen-Derived Hydroxyproline (Hyp)-Containing Cyclic Dipeptides with High Oral Bioavailability: Efficient Formation of Cyclo(X-Hyp) from X-Hyp-Gly-Type Tripeptides by Heating. Taga Y; Kusubata M; Ogawa-Goto K; Hattori S J Agric Food Chem; 2017 Nov; 65(43):9514-9521. PubMed ID: 28988478 [TBL] [Abstract][Full Text] [Related]
38. Alpha-helix stabilization by alanine relative to glycine: roles of polar and apolar solvent exposures and of backbone entropy. López-Llano J; Campos LA; Sancho J Proteins; 2006 Aug; 64(3):769-78. PubMed ID: 16755589 [TBL] [Abstract][Full Text] [Related]
39. The triple helix in equilibrium with coil conversion of collagen-like polytripeptides in aqueous and nonaqueous solvents. Comparison of the thermodynamic parameters and the binding of water to (L-Pro-L-Pro-Gly)n and (L-Pro-L-Hyp-Gly)n. Engel J; Chen HT; Prockop DJ; Klump H Biopolymers; 1977 Mar; 16(3):601-22. PubMed ID: 843606 [No Abstract] [Full Text] [Related]
40. Contribution of tertiary amides to the conformational stability of collagen triple helices. Kersteen EA; Raines RT Biopolymers; 2001 Jul; 59(1):24-8. PubMed ID: 11343277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]