These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 4269000)

  • 41. Chondrogenesis in chick limb mesenchyme in vitro derived from distal limb bud tips: changes in cyclic AMP and in prostaglandin responsiveness.
    Biddulph DM; Sawyer LM; Dozier MM
    J Cell Physiol; 1988 Jul; 136(1):81-7. PubMed ID: 2840445
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Ecto-mesodermal interactions and chick embryo limb chondrogenesis. Ultrastructural studies of cultures in the vitelline membrane (author's transl)].
    Gumpel-Pinot M
    Arch Anat Microsc Morphol Exp; 1981; 70(1):1-14. PubMed ID: 7196202
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glycosidic cleavage of galactose from chick limb mesenchymal cells inhibits in vitro chondrogenesis.
    Elmer WA; Egozi EI; Pollard S; Cochran JD; Kwasigroch TE
    Prog Clin Biol Res; 1993; 383B():445-54. PubMed ID: 8115363
    [No Abstract]   [Full Text] [Related]  

  • 44. Stage- and region-dependent chondrogenesis and growth of chick wing-bud mesenchyme in serum-containing and defined tissue culture media.
    Paulsen DF; Chen WD; Pang L; Johnson B; Okello D
    Dev Dyn; 1994 May; 200(1):39-52. PubMed ID: 8081013
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Leg bud mesoderm retains morphogenetic potential to express limb-like characteristics ("limbness") in collagen gel culture.
    Isokawa K; Krug EL; Fallon JF; Markwald RR
    Dev Dyn; 1992 Apr; 193(4):314-24. PubMed ID: 1511171
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The tumor suppressor BTG1 is expressed in the developing digits and regulates skeletogenic differentiation of limb mesodermal progenitors in high density cultures.
    Lorda-Diez CI; Montero JA; Garcia-Porrero JA; Hurle JM
    Cell Tissue Res; 2016 May; 364(2):299-308. PubMed ID: 26662056
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The formation of extracellular matrix during chondrogenic differentiation of mesenchymal stem cells correlates with increased levels of xylosyltransferase I.
    Prante C; Bieback K; Funke C; Schön S; Kern S; Kuhn J; Gastens M; Kleesiek K; Götting C
    Stem Cells; 2006 Oct; 24(10):2252-61. PubMed ID: 16778156
    [TBL] [Abstract][Full Text] [Related]  

  • 48. FGF-stimulated outgrowth and proliferation of limb mesoderm is dependent on syndecan-3.
    Dealy CN; Seghatoleslami MR; Ferrari D; Kosher RA
    Dev Biol; 1997 Apr; 184(2):343-50. PubMed ID: 9133440
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interrelationship between cyclic AMP level and chondrogenesis in vitro.
    Hadházy C; László MB
    Arch Ital Anat Embriol; 1989; 94(3):263-6. PubMed ID: 2561389
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The pattern of expression of the chicken homolog of HOX1I in the developing limb suggests a possible role in the ectodermal inhibition of chondrogenesis.
    Rogina B; Coelho CN; Kosher RA; Upholt WB
    Dev Dyn; 1992 Jan; 193(1):92-101. PubMed ID: 1347239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cell sorting out according to species in aggregates containing mouse and chick embryonic limb mesoblast cells.
    Burdick ML
    J Exp Zool; 1970 Nov; 175(3):357-67. PubMed ID: 5478939
    [No Abstract]   [Full Text] [Related]  

  • 52. In vitro chondrogenesis of limb mesoderm from normal and brachypod mouse embryos.
    Elmer WA; Selleck DK
    J Embryol Exp Morphol; 1975 Apr; 33(2):371-86. PubMed ID: 1176852
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role for short-range interactions in the formation of cartilage and muscle masses in transfilter micromass cultures.
    Schramm CA; Reiter RS; Solursh M
    Dev Biol; 1994 Jun; 163(2):467-79. PubMed ID: 8200482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. C-type natriuretic peptide regulation of limb mesenchymal chondrogenesis is accompanied by altered N-cadherin and collagen type X-related functions.
    Alan T; Tufan AC
    J Cell Biochem; 2008 Sep; 105(1):227-35. PubMed ID: 18461555
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biosynthesis of chondroitin sulfate: immunoprecipitation of interacting xylosyltransferase and galactosyltransferase.
    Schwartz NB
    FEBS Lett; 1975 Jan; 49(3):342-5. PubMed ID: 1167359
    [No Abstract]   [Full Text] [Related]  

  • 56. Inhibition of in vitro limb cartilage differentiation by syndecan-3 antibodies.
    Seghatoleslami MR; Kosher RA
    Dev Dyn; 1996 Sep; 207(1):114-9. PubMed ID: 8875081
    [TBL] [Abstract][Full Text] [Related]  

  • 57. BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures.
    Boskey AL; Paschalis EP; Binderman I; Doty SB
    J Cell Biochem; 2002; 84(3):509-19. PubMed ID: 11813256
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chondrogenesis in chick embryo somites grafted with adjacent and heterologous tissues.
    O'Hare MJ
    J Embryol Exp Morphol; 1972 Feb; 27(1):229-34. PubMed ID: 4259876
    [No Abstract]   [Full Text] [Related]  

  • 59. Mesenchymal Stem Cells: Time to Change the Name!
    Caplan AI
    Stem Cells Transl Med; 2017 Jun; 6(6):1445-1451. PubMed ID: 28452204
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mesenchymal Stem Cells: The Past, the Present, the Future.
    Caplan AI
    Cartilage; 2010 Jan; 1(1):6-9. PubMed ID: 26069532
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.