These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 4270054)

  • 1. Properties of the calcium-independent ATPase of the membranes of the sarcoplasmic reticulum delipidated by the nonionic detergent Triton X-100.
    Walter H; Hasselbach W
    Eur J Biochem; 1973 Jul; 36(1):110-9. PubMed ID: 4270054
    [No Abstract]   [Full Text] [Related]  

  • 2. Activation energies of the ATPase activity of sarcoplasmic reticulum.
    Madeira VM; Antunes-Madeira MC; Carvalho AP
    Biochem Biophys Res Commun; 1974 Jun; 58(4):897-904. PubMed ID: 4275995
    [No Abstract]   [Full Text] [Related]  

  • 3. The separation of the solubilized proteins of the sarcoplasmic reticulum on DEAE-cellulose and its modification.
    Hasselbach W; Migala A
    FEBS Lett; 1972 Oct; 26(1):20-4. PubMed ID: 4264159
    [No Abstract]   [Full Text] [Related]  

  • 4. Unsaturated fatty acids as reactivators of the calcium-dependent ATPase of delipidated sarcoplasmic membranes.
    The R; Hasselbach W
    Eur J Biochem; 1973 Nov; 39(1):63-8. PubMed ID: 4272362
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular species of glycerolipids of adenosine triphosphatase and sarcotubular membranes of rabbit skeletal muscle.
    Marai L; Kuksis A
    Can J Biochem; 1973 Sep; 51(9):1248-61. PubMed ID: 4270284
    [No Abstract]   [Full Text] [Related]  

  • 6. The mechanism of ATP hydrolysis by sacoplasmic reticulum.
    Coffey RL; Lagwinska E; Oliver M; Martonosi A
    Arch Biochem Biophys; 1975 Sep; 170(1):37-48. PubMed ID: 240324
    [No Abstract]   [Full Text] [Related]  

  • 7. Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes.
    Lee AG; Birdsall NJ; Metcalfe JC; Toon PA; Warren GB
    Biochemistry; 1974 Aug; 13(18):3699-705. PubMed ID: 4368511
    [No Abstract]   [Full Text] [Related]  

  • 8. Solubilization of sarcoplasmic reticulum with Triton X-100.
    McFarland BH; Inesi G
    Arch Biochem Biophys; 1971 Aug; 145(2):456-64. PubMed ID: 4256588
    [No Abstract]   [Full Text] [Related]  

  • 9. The calcium binding sites involved in the regulation of the purified adenosine triphosphatase of the sarcoplasmic reticulum.
    Ikemoto N
    J Biol Chem; 1974 Jan; 249(2):649-51. PubMed ID: 4272125
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of phospholipids in the calcium-dependent ATPase of the sarcoplasmic reticulum. Enzymatic and ESR studies with phospholipid-replaced membranes.
    Hidalgo C; Ikemoto N; Gergely J
    J Biol Chem; 1976 Jul; 251(14):4224-32. PubMed ID: 180020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the arrangement of protein components in the sarcomplasmic reticulum of rat skeletal muscle.
    Yu BP; Masoro EJ; Morley TF
    J Biol Chem; 1976 Apr; 251(7):2037-43. PubMed ID: 131799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation of phosphoenzyme of sarcoplasmic reticulum. Requirement for membrane-bound Ca2+.
    Nakamura J; Endo Y; Konishi K
    Biochim Biophys Acta; 1977 Dec; 471(2):260-72. PubMed ID: 144531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids.
    Nakamura H; Jilka RL; Boland R; Martonosi AN
    J Biol Chem; 1976 Sep; 251(17):5414-23. PubMed ID: 134038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of sarcoplasmic reticulum adenosine triphosphatase by adenosine triphosphate magnesium.
    Horgan DJ
    Arch Biochem Biophys; 1974 May; 162(1):6-11. PubMed ID: 4275445
    [No Abstract]   [Full Text] [Related]  

  • 15. Arginyl residue modification of the sarcoplasmic reticulum ATPase protein.
    Murphy AJ
    Biochem Biophys Res Commun; 1976 Jun; 70(4):1048-54. PubMed ID: 133684
    [No Abstract]   [Full Text] [Related]  

  • 16. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate.
    Yoshida H; Tonomura Y
    J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid-protein interactions in the Ca2+-adenosine triphosphatase of sarcoplasmic reticulum.
    Knowles AF; Eytan E; Racker E
    J Biol Chem; 1976 Sep; 251(17):5161-65. PubMed ID: 134036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-linking of the sarcoplasmic reticulum ATPase protein.
    Murphy AJ
    Biochem Biophys Res Commun; 1976 May; 70(1):160-6. PubMed ID: 132175
    [No Abstract]   [Full Text] [Related]  

  • 19. Filipin as a fluorescent probe for the location of cholesterol in the membranes of fragmented sarcoplasmic reticulum.
    Drabikowski W; LagwiƄska E; Sarzala MG
    Biochim Biophys Acta; 1973 Jan; 291(1):61-70. PubMed ID: 4265275
    [No Abstract]   [Full Text] [Related]  

  • 20. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2 plus translocation coupled with formation of a phosphorylated intermediate.
    Sumida M; Tonomura Y
    J Biochem; 1974 Feb; 75(2):283-97. PubMed ID: 4276200
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.