BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 4270498)

  • 1. Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cells from mice.
    Giller EL; Schrier BK; Shainberg A; Fisk HR; Nelson PG
    Science; 1973 Nov; 182(4112):588-9. PubMed ID: 4270498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition by transforming growth factor beta of choline acetyltransferase stimulation in a co-culture of spinal cord and muscle cells from mice.
    Kawata A; Nakane M; Deguchi T
    Brain Res Dev Brain Res; 1990 Dec; 57(1):129-37. PubMed ID: 2090366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choline acetyltransferase activity of spinal cord cell cultures increased by co-culture with muscle and by muscle-conditioned medium.
    Giller EL; Neale JH; Bullock PN; Schrier BK; Nelson PG
    J Cell Biol; 1977 Jul; 74(1):16-29. PubMed ID: 874000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of choline acetyltransferase activity in a co-culture of spinal cord and skeletal muscle cells is inhibited by myogenic differentiation inhibitors.
    Kengaku M; Kawashima S; Nakane M
    Brain Res Dev Brain Res; 1991 Jun; 60(2):133-6. PubMed ID: 1893562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of creatine kinase and phosphoglycerate mutase isozymes during development in aneural and innervated human muscle culture.
    Miranda AF; Peterson ER; Masurovsky EB
    Tissue Cell; 1988; 20(2):179-91. PubMed ID: 2841773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of fibronectin in the inhibitory effect of TGF-beta on choline acetyltransferase activity in co-cultures of spinal cord neurons and myotubes.
    Kengaku M; Kawata A; Kawashima S; Nakane M
    Brain Res Dev Brain Res; 1991 Aug; 61(2):281-4. PubMed ID: 1752045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Choline acetyltransferase induction in cultured neurons: dissociated spinal cord cells are dependent on muscle cells, organotypic explants are not.
    Meyer T; Burkart W; Jockusch H
    Neurosci Lett; 1979 Jan; 11(1):59-62. PubMed ID: 431887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thyrotropin-releasing hormone enhances choline acetyltransferase and creatine kinase in cultured spinal ventral horn neurons.
    Schmidt-Achert KM; Askanas V; Engel WK
    J Neurochem; 1984 Aug; 43(2):586-9. PubMed ID: 6429281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased activity of choline acetyltransferase and acetylcholinesterase in developing cultures of chick spinal cord: a correlation with morphological development.
    Kim SU; Oh TH; Johnson DD
    Neurobiology; 1975 May; 5(2):119-27. PubMed ID: 1134618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source and target cell specificities of a conditioned medium factor that increases choline acetyltransferase activity in cultured spinal cord cells.
    Godfrey EW; Schrier BK; Nelson PG
    Dev Biol; 1980 Jun; 77(2):403-18. PubMed ID: 7399131
    [No Abstract]   [Full Text] [Related]  

  • 11. Plasminogen activators in the neuromuscular system of the wobbler mutant mouse.
    Blondet B; Barlovatz-Meimon G; Festoff BW; Soria C; Soria J; Rieger F; Hantai D
    Brain Res; 1992 May; 580(1-2):303-10. PubMed ID: 1504807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arachidonic acid increases choline acetyltransferase activity in spinal cord neurons through a protein kinase C-mediated mechanism.
    Chalimoniuk M; King-Pospisil K; Pedersen WA; Malecki A; Wylegala E; Mattson MP; Hennig B; Toborek M
    J Neurochem; 2004 Aug; 90(3):629-36. PubMed ID: 15255940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enrichment of spinal cord cell cultures with motoneurons.
    Berg DK; Fischbach GD
    J Cell Biol; 1978 Apr; 77(1):83-98. PubMed ID: 566275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choline acetyltransferase and neuronal maturation.
    Burt AM
    Prog Brain Res; 1973; 40(0):246-52. PubMed ID: 4802864
    [No Abstract]   [Full Text] [Related]  

  • 15. [Histochemistry and choline acetyltransferase in cat spinal cord and spinal ganglia].
    Motavkin PA; Okhotin VE
    Arkh Anat Gistol Embriol; 1978 Sep; 75(9):52-6. PubMed ID: 718431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of cholinergic expression in cultured spinal cord neurons.
    Lombard-Golly D; Wong V; Kessler JA
    Dev Biol; 1990 Jun; 139(2):396-406. PubMed ID: 2338174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of a hemisection on the distribution of acetylcholinesterase and choline acetyltransferase in the spinal cord of the cat.
    Gwyn DG; Wolstencroft JH; Silver A
    Brain Res; 1972 Dec; 47(2):289-301. PubMed ID: 4509138
    [No Abstract]   [Full Text] [Related]  

  • 18. A neurite-promoting factor from muscle supports the survival of cultured chicken spinal motor neurons.
    Jeong SJ; Oh TH; Markelonis GJ
    J Neurobiol; 1991 Jul; 22(5):462-74. PubMed ID: 1716301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adverse effects of phenobarbital on morphological and biochemical development of fetal mouse spinal cord neurons in culture.
    Bergey GK; Swaiman KF; Schrier BK; Fitzgerald S; Nelson PG
    Ann Neurol; 1981 Jun; 9(6):584-9. PubMed ID: 7259121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous and exogenous factors support neuronal survival and choline acetyltransferase activity in embryonic spinal cord cultures.
    Manthorpe M; Luyten W; Longo FM; Varon S
    Brain Res; 1983 May; 267(1):57-66. PubMed ID: 6860950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.