These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 427091)

  • 21. Comparison of non-tracer and tracer methods for determination of volatile fatty acid production rate in the rumen of sheep fed on two levels of intake.
    Martin C; Kristensen NB; Huhtanen P
    Br J Nutr; 2001 Sep; 86(3):331-40. PubMed ID: 11570985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quin's oval and other microbiota in the rumens of molasses-fed sheep.
    Vicini JL; Brulla WJ; Davis CL; Bryant MP
    Appl Environ Microbiol; 1987 Jun; 53(6):1273-6. PubMed ID: 3300549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen micro-organisms in vitro.
    Carro MD; Ranilla MJ
    Br J Nutr; 2003 Sep; 90(3):617-23. PubMed ID: 13129468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The utilization of diets containing acetate salts by growing lambs as measured by comparative slaughter and respiration calorimetry, together with rumen fermentation.
    Hovell FD; Greenhalgh JF; Wainman FW
    Br J Nutr; 1976 May; 35(3):343-63. PubMed ID: 1268183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methane emissions changed nonlinearly with graded substitution of alfalfa silage with corn silage and corn grain in the diet of sheep and relation with rumen fermentation characteristics in vivo and in vitro.
    Jonker A; Lowe K; Kittelmann S; Janssen PH; Ledgard S; Pacheco D
    J Anim Sci; 2016 Aug; 94(8):3464-3475. PubMed ID: 27695787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Milk fat depression in dairy ewes fed fish oil: Might differences in rumen biohydrogenation, fermentation, or bacterial community explain the individual variation?
    Frutos P; Toral PG; Belenguer A; Hervás G
    J Dairy Sci; 2018 Jul; 101(7):6122-6132. PubMed ID: 29705417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rumen responses to dietary supplementation with cashew nut shell liquid and its cessation in sheep.
    Kang S; Suzuki R; Suzuki Y; Koike S; Nagashima K; Kobayashi Y
    Anim Sci J; 2018 Nov; 89(11):1549-1555. PubMed ID: 30182380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of isoacids, urea, and sulfur on ruminal fermentation in sheep fed high fiber diets.
    Brondani A; Towns R; Chou K; Cook RM; Barradas H
    J Dairy Sci; 1991 Aug; 74(8):2724-7. PubMed ID: 1655846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of pistachio by-products in replacement of alfalfa hay on populations of rumen bacteria involved in biohydrogenation and fermentative parameters in the rumen of sheep.
    Ghaffari MH; Tahmasbi AM; Khorvash M; Naserian AA; Ghaffari AH; Valizadeh H
    J Anim Physiol Anim Nutr (Berl); 2014 Jun; 98(3):578-86. PubMed ID: 23957535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The use of pivalic acid as a reference substance in measurements of production of volatile fatty acids by rumen micro-organisms in vitro.
    Czerkawski JW
    Br J Nutr; 1976 Sep; 36(2):311-5. PubMed ID: 952843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro fermentation of total mixed diets differing in concentrate proportion: relative effects of inocula and substrates.
    Serment A; Giger-Reverdin S; Schmidely P; Dhumez O; Broudiscou LP; Sauvant D
    J Sci Food Agric; 2016 Jan; 96(1):160-8. PubMed ID: 25581524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production and metabolism of volatile fatty acids, glucose and CO2 in steers and the effects of monensin on volatile fatty acid kinetics.
    Armentano LE; Young JW
    J Nutr; 1983 Jun; 113(6):1265-77. PubMed ID: 6406652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage:concentrate ratio.
    García-Martínez R; Ranilla MJ; Tejido ML; Carro MD
    Br J Nutr; 2005 Jul; 94(1):71-7. PubMed ID: 16115335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Passage of protozoa and volatile fatty acids from the rumen of the sheep and from a continuous in vitro fermentation system.
    Weller RA; Pilgrim AF
    Br J Nutr; 1974 Sep; 32(2):341-51. PubMed ID: 4213614
    [No Abstract]   [Full Text] [Related]  

  • 36. Effect of sheep rumen fermentation and methane inhibition on the toxicity of Senecio jacobaea.
    Swick RA; Cheeke PR; Ramsdell HS; Buhler DR
    J Anim Sci; 1983 Mar; 56(3):645-51. PubMed ID: 6841299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fermentation in the rumen of the sheep. I. The production of volatile fatty acids and methane during the fermentation of wheaten hay and lucerne hay in vitro by micro-organisms from the rumen.
    GRAY FV; PILGRIM AF; WELLER RA
    J Exp Biol; 1951 Mar; 28(1):74-82. PubMed ID: 14824391
    [No Abstract]   [Full Text] [Related]  

  • 38. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep.
    van Zijderveld SM; Gerrits WJ; Apajalahti JA; Newbold JR; Dijkstra J; Leng RA; Perdok HB
    J Dairy Sci; 2010 Dec; 93(12):5856-66. PubMed ID: 21094759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative evaluation of ruminal methane and carbon dioxide formation from formate through C-13 stable isotope analysis in a batch culture system.
    He ZX; Qiao JY; Yan QX; Tan ZL; Wang M
    Animal; 2019 Jan; 13(1):90-97. PubMed ID: 29644945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rates of entry and oxidation of acetate, glucose, D(-)-beta-hydroxybutyrate, palmitate, oleate and stearate, and rates of production and oxidation of propionate and butyrate in fed and starved sheep.
    Annison EF; Brown RE; Leng RA; Lindsay DB; West CE
    Biochem J; 1967 Jul; 104(1):135-47. PubMed ID: 6035506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.