These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 427146)
1. The importance of the phospholipid bilayer and the length of the cholesterol molecule in membrane structure. Suckling KE; Blair HA; Boyd GS; Craig IF; Malcolm BR Biochim Biophys Acta; 1979 Feb; 551(1):10-21. PubMed ID: 427146 [TBL] [Abstract][Full Text] [Related]
2. Effect of sterol side-chain structure on sterol-phosphatidylcholine interactions in monolayers and small unilamellar vesicles. Slotte JP; Jungner M; Vilchèze C; Bittman R Biochim Biophys Acta; 1994 Mar; 1190(2):435-43. PubMed ID: 8142447 [TBL] [Abstract][Full Text] [Related]
3. Optimum interaction of sterol side chains with phosphatidylcholine. Craig IF; Boyd GS; Suckling KE Biochim Biophys Acta; 1978 Apr; 508(2):418-21. PubMed ID: 205247 [TBL] [Abstract][Full Text] [Related]
4. Interactions of the cholesterol side-chain with egg lecithin. A spin label study. Suckling KE; Boyd GS Biochim Biophys Acta; 1976 Jun; 436(2):295-300. PubMed ID: 179595 [TBL] [Abstract][Full Text] [Related]
5. Phosphatidylcholine and cholesterol interactions in model membranes. Guyer W; Bloch K Chem Phys Lipids; 1983 Nov; 33(4):313-22. PubMed ID: 6680049 [TBL] [Abstract][Full Text] [Related]
6. Effect of fatty acyl chain length of phosphatidylcholine on their transfer from liposomes to erythrocytes and transverse diffusion in the membranes inferred by TEMPO-phosphatidylcholine spin probes. Tamura A; Yoshikawa K; Fujii T; Ohki K; Nozawa Y; Sumida Y Biochim Biophys Acta; 1986 Feb; 855(2):250-6. PubMed ID: 3004580 [TBL] [Abstract][Full Text] [Related]
7. Phosphatidylcholine liposomes containing cholesterol analogues with side chains of various lengths. Nakamura T; Nishikawa M; Inoue K; Nojima S; Akiyama T; Sankawa U Chem Phys Lipids; 1980 Jan; 26(1):101-10. PubMed ID: 7357682 [TBL] [Abstract][Full Text] [Related]
8. Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes. Hyslop PA; Morel B; Sauerheber RD Biochemistry; 1990 Jan; 29(4):1025-38. PubMed ID: 2160270 [TBL] [Abstract][Full Text] [Related]
9. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
10. Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Effects of temperature, cholesterol and magnetic field. Shimoyama Y; Eriksson LE; Ehrenberg A Biochim Biophys Acta; 1978 Apr; 508(2):213-35. PubMed ID: 205243 [TBL] [Abstract][Full Text] [Related]
11. Spin labelling study of interfacial properties of egg-phosphatidylcholine liposomes as a function of cholesterol concentrations. Mirosavljević K; Noethig-Laslo V Chem Phys Lipids; 2008 Oct; 155(2):74-9. PubMed ID: 18691564 [TBL] [Abstract][Full Text] [Related]
12. Sterol ordering effects and permeability regulation in phosphatidylcholine bilayers. A comparison of ESR spin-probe data from oriented multilamellae and dispersions. Butler KW; Smith IC Can J Biochem; 1978 Feb; 56(2):117-22. PubMed ID: 204400 [TBL] [Abstract][Full Text] [Related]
13. The effect of cholesterol on the structure of phosphatidylcholine bilayers. McIntosh TJ Biochim Biophys Acta; 1978 Oct; 513(1):43-58. PubMed ID: 718889 [TBL] [Abstract][Full Text] [Related]
14. Cooperativity of the phase transition in single- and multibilayer lipid vesicles. Marsh D; Watts A; Knowles PF Biochim Biophys Acta; 1977 Mar; 465(3):500-14. PubMed ID: 189815 [TBL] [Abstract][Full Text] [Related]
15. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Ohvo H; Slotte JP Biochemistry; 1996 Jun; 35(24):8018-24. PubMed ID: 8672506 [TBL] [Abstract][Full Text] [Related]
16. Dynamic properties of the haptenic site of lipid haptens in phosphatidylcholine membranes. Their relation to the phase transition of the host lattice. Takeshita K; Utsumi H; Hamada A Biophys J; 1987 Aug; 52(2):187-97. PubMed ID: 2822160 [TBL] [Abstract][Full Text] [Related]
17. Effects of fumonisin B1 and (hydrolyzed) fumonisin backbone AP1 on membranes: a spin-label study. Yin JJ; Smith MJ; Eppley RM; Troy AL; Page SW; Sphon JA Arch Biochem Biophys; 1996 Nov; 335(1):13-22. PubMed ID: 8914830 [TBL] [Abstract][Full Text] [Related]
18. The intermediate monoclinic phase of phosphatidylcholines. Luna EJ; McConnell HM Biochim Biophys Acta; 1977 May; 466(3):381-92. PubMed ID: 192294 [TBL] [Abstract][Full Text] [Related]
19. Spin-label studies on phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase. Kusumi A; Subczynski WK; Pasenkiewicz-Gierula M; Hyde JS; Merkle H Biochim Biophys Acta; 1986 Jan; 854(2):307-17. PubMed ID: 3002470 [TBL] [Abstract][Full Text] [Related]
20. Effect of lipid composition on sensitivity of lipid membranes to Triton X-100. Inoue K; Kitagawa T Biochim Biophys Acta; 1976 Feb; 426(1):1-16. PubMed ID: 942862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]