These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 4271562)
1. Reaction mechanism of the cardiac sarcotubule calcium(II) dependent adenosine triphosphatase. Pang DC; Briggs FN Biochemistry; 1973 Nov; 12(24):4905-11. PubMed ID: 4271562 [No Abstract] [Full Text] [Related]
2. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase. Suko J; Hasselbach W Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of propranolol inhibition of the cardiac sarcotubule-gamma-AT32P reaction. Pang DC; Briggs FN Biochem Pharmacol; 1973 Jun; 22(11):1301-8. PubMed ID: 4269545 [No Abstract] [Full Text] [Related]
4. The role of calcium and magnesium in the adenosine triphosphatase reaction of sarcoplasmic reticulum. Panet R; Pick U; Selinger Z J Biol Chem; 1971 Dec; 246(23):7349-56. PubMed ID: 4256833 [No Abstract] [Full Text] [Related]
5. Proceedings: Properties of a phosphorylated intermediate of the Ca2+-dependent ATPase and ADP-ATP phosphate exchange of cardiac sarcoplasmic reticulum. Suko J; Hasselbach W Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R97. PubMed ID: 4276657 [No Abstract] [Full Text] [Related]
6. The role of phospholipid in CA 2+ -stimulated ATPase activity of sarcoplasmic reticulum. Meissner G; Fleischer S Biochim Biophys Acta; 1972 Jan; 255(1):19-33. PubMed ID: 4258773 [No Abstract] [Full Text] [Related]
7. Effect of ryanodine on skeletal muscle reticulum calcium adenosine triphosphatase (CaATPase). Fairhurst AS Biochem Pharmacol; 1973 Nov; 22(22):2815-27. PubMed ID: 4271525 [No Abstract] [Full Text] [Related]
8. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase. Tada M; Kirchberger MA; Repke DI; Katz AM J Biol Chem; 1974 Oct; 249(19):6174-80. PubMed ID: 4371608 [No Abstract] [Full Text] [Related]
9. Analysis of calcium binding and release by canine cardiac relaxing system (sarcoplasmic reticulum). The use of specific inhibitors to construct a two-component model for calcium binding and transport. Entman ML; Snow TR; Freed D; Schwartz A J Biol Chem; 1973 Nov; 248(22):7762-72. PubMed ID: 4270770 [No Abstract] [Full Text] [Related]
10. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate. Winkler F; Suko J Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259 [No Abstract] [Full Text] [Related]
11. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. III. Sequential occurrence of ADP-sensitive and ADP-insensitive phosphoenzymes. Shigekawa M; Dougherty JP J Biol Chem; 1978 Mar; 253(5):1458-64. PubMed ID: 146712 [No Abstract] [Full Text] [Related]
12. Cardiac sarcoplasmic reticulum: chemical and electron microscope studies of calcium accumulation. Carsten ME; Reedy MK J Ultrastruct Res; 1971 Jun; 35(5):554-74. PubMed ID: 4258963 [No Abstract] [Full Text] [Related]
13. Regulation of the calcium pump of cardiac sarcoplasmic reticulum. Interactive roles of potassium and ATP on the phosphoprotein intermediate of the (K+,Ca2+)-ATPase. Jones LR; Besch HR; Watanabe AM J Biol Chem; 1978 Mar; 253(5):1643-53. PubMed ID: 146716 [No Abstract] [Full Text] [Related]
14. Cyclic adenosine 3',5'-monophosphate-stimulated protein kinase and a substrate associated with cardiac sarcoplasmic reticulum. Wray HL; Gray RR; Olsson RA J Biol Chem; 1973 Feb; 248(4):1496-8. PubMed ID: 4346960 [No Abstract] [Full Text] [Related]
15. Phosphorylation of the membranous protein of the sarcoplasmic reticulum. Inhibition by Na + and K + . De Meis L Biochemistry; 1972 Jun; 11(13):2460-5. PubMed ID: 4261141 [No Abstract] [Full Text] [Related]
16. Mechanism of quinidine and chlorpromazine inhibition of sarcotubular ATPase activity. Pang DC; Briggs FN Biochem Pharmacol; 1976 Jan; 25(1):21-5. PubMed ID: 130135 [No Abstract] [Full Text] [Related]
17. Properties of the sarcoplasmic ATPase reconstituted by oleate and lysolecithin after lipid depletion. The R; Hasselbach W Eur J Biochem; 1972 Jul; 28(3):357-63. PubMed ID: 4263473 [No Abstract] [Full Text] [Related]
18. The nature of the cardiac glycoside enzyme complex: mechanism and kinetics of binding and dissociation using a high-activity heart Na+, K+-ATPase. Schwartz A; Lindenmayer GE; Allen JC; McCans JL Ann N Y Acad Sci; 1974; 242(0):577-97. PubMed ID: 4279607 [No Abstract] [Full Text] [Related]
19. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2 plus translocation coupled with formation of a phosphorylated intermediate. Sumida M; Tonomura Y J Biochem; 1974 Feb; 75(2):283-97. PubMed ID: 4276200 [No Abstract] [Full Text] [Related]
20. Kinetics of the cooperativity of the Ca2+-transporting adenosine triphosphatase of sarcoplasmic reticulum and the mechanism of the ATP interaction. Neet KE; Green NM Arch Biochem Biophys; 1977 Jan; 178(2):588-97. PubMed ID: 138391 [No Abstract] [Full Text] [Related] [Next] [New Search]