BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 4271562)

  • 1. Reaction mechanism of the cardiac sarcotubule calcium(II) dependent adenosine triphosphatase.
    Pang DC; Briggs FN
    Biochemistry; 1973 Nov; 12(24):4905-11. PubMed ID: 4271562
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J; Hasselbach W
    Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of propranolol inhibition of the cardiac sarcotubule-gamma-AT32P reaction.
    Pang DC; Briggs FN
    Biochem Pharmacol; 1973 Jun; 22(11):1301-8. PubMed ID: 4269545
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of calcium and magnesium in the adenosine triphosphatase reaction of sarcoplasmic reticulum.
    Panet R; Pick U; Selinger Z
    J Biol Chem; 1971 Dec; 246(23):7349-56. PubMed ID: 4256833
    [No Abstract]   [Full Text] [Related]  

  • 5. Proceedings: Properties of a phosphorylated intermediate of the Ca2+-dependent ATPase and ADP-ATP phosphate exchange of cardiac sarcoplasmic reticulum.
    Suko J; Hasselbach W
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R97. PubMed ID: 4276657
    [No Abstract]   [Full Text] [Related]  

  • 6. The role of phospholipid in CA 2+ -stimulated ATPase activity of sarcoplasmic reticulum.
    Meissner G; Fleischer S
    Biochim Biophys Acta; 1972 Jan; 255(1):19-33. PubMed ID: 4258773
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of ryanodine on skeletal muscle reticulum calcium adenosine triphosphatase (CaATPase).
    Fairhurst AS
    Biochem Pharmacol; 1973 Nov; 22(22):2815-27. PubMed ID: 4271525
    [No Abstract]   [Full Text] [Related]  

  • 8. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase.
    Tada M; Kirchberger MA; Repke DI; Katz AM
    J Biol Chem; 1974 Oct; 249(19):6174-80. PubMed ID: 4371608
    [No Abstract]   [Full Text] [Related]  

  • 9. Analysis of calcium binding and release by canine cardiac relaxing system (sarcoplasmic reticulum). The use of specific inhibitors to construct a two-component model for calcium binding and transport.
    Entman ML; Snow TR; Freed D; Schwartz A
    J Biol Chem; 1973 Nov; 248(22):7762-72. PubMed ID: 4270770
    [No Abstract]   [Full Text] [Related]  

  • 10. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate.
    Winkler F; Suko J
    Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259
    [No Abstract]   [Full Text] [Related]  

  • 11. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. III. Sequential occurrence of ADP-sensitive and ADP-insensitive phosphoenzymes.
    Shigekawa M; Dougherty JP
    J Biol Chem; 1978 Mar; 253(5):1458-64. PubMed ID: 146712
    [No Abstract]   [Full Text] [Related]  

  • 12. Cardiac sarcoplasmic reticulum: chemical and electron microscope studies of calcium accumulation.
    Carsten ME; Reedy MK
    J Ultrastruct Res; 1971 Jun; 35(5):554-74. PubMed ID: 4258963
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of the calcium pump of cardiac sarcoplasmic reticulum. Interactive roles of potassium and ATP on the phosphoprotein intermediate of the (K+,Ca2+)-ATPase.
    Jones LR; Besch HR; Watanabe AM
    J Biol Chem; 1978 Mar; 253(5):1643-53. PubMed ID: 146716
    [No Abstract]   [Full Text] [Related]  

  • 14. Cyclic adenosine 3',5'-monophosphate-stimulated protein kinase and a substrate associated with cardiac sarcoplasmic reticulum.
    Wray HL; Gray RR; Olsson RA
    J Biol Chem; 1973 Feb; 248(4):1496-8. PubMed ID: 4346960
    [No Abstract]   [Full Text] [Related]  

  • 15. Phosphorylation of the membranous protein of the sarcoplasmic reticulum. Inhibition by Na + and K + .
    De Meis L
    Biochemistry; 1972 Jun; 11(13):2460-5. PubMed ID: 4261141
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanism of quinidine and chlorpromazine inhibition of sarcotubular ATPase activity.
    Pang DC; Briggs FN
    Biochem Pharmacol; 1976 Jan; 25(1):21-5. PubMed ID: 130135
    [No Abstract]   [Full Text] [Related]  

  • 17. Properties of the sarcoplasmic ATPase reconstituted by oleate and lysolecithin after lipid depletion.
    The R; Hasselbach W
    Eur J Biochem; 1972 Jul; 28(3):357-63. PubMed ID: 4263473
    [No Abstract]   [Full Text] [Related]  

  • 18. The nature of the cardiac glycoside enzyme complex: mechanism and kinetics of binding and dissociation using a high-activity heart Na+, K+-ATPase.
    Schwartz A; Lindenmayer GE; Allen JC; McCans JL
    Ann N Y Acad Sci; 1974; 242(0):577-97. PubMed ID: 4279607
    [No Abstract]   [Full Text] [Related]  

  • 19. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2 plus translocation coupled with formation of a phosphorylated intermediate.
    Sumida M; Tonomura Y
    J Biochem; 1974 Feb; 75(2):283-97. PubMed ID: 4276200
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetics of the cooperativity of the Ca2+-transporting adenosine triphosphatase of sarcoplasmic reticulum and the mechanism of the ATP interaction.
    Neet KE; Green NM
    Arch Biochem Biophys; 1977 Jan; 178(2):588-97. PubMed ID: 138391
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.