BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 4271873)

  • 1. Estimation of pathways of glucose metabolism employing (14C)glucose.
    Kümmel L
    Z Naturforsch C; 1973; 28(1):9-13. PubMed ID: 4271873
    [No Abstract]   [Full Text] [Related]  

  • 2. Radiometric micromethod for quantitation of glucose utilization by the erythrocyte.
    Hutton JJ
    Anal Biochem; 1972 Feb; 45(2):577-84. PubMed ID: 5060607
    [No Abstract]   [Full Text] [Related]  

  • 3. [Regulatory factors in methylene blue catalysis in erythrocytes].
    Roigas H; Zoellner E; Jacobasch G; Schultze M; Rapoport S
    Eur J Biochem; 1970 Jan; 12(1):24-30. PubMed ID: 4392179
    [No Abstract]   [Full Text] [Related]  

  • 4. The influence of pH and methylene blue on the pathways of glucose utilization and lactate formation in erythrocytes of man.
    Albrecht V; Roigas H; Schultze M; Jacobasch G; Rapoport S
    Eur J Biochem; 1971 May; 20(1):44-50. PubMed ID: 4397083
    [No Abstract]   [Full Text] [Related]  

  • 5. [Significance and regulation of the pentosephosphate pathway in human erythrocytes. II. Experiments with glucose-6-phosphate dehydrogenase-deficient erythrocytes].
    Brand K; Arese P; Rivera M
    Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):509-14. PubMed ID: 4392679
    [No Abstract]   [Full Text] [Related]  

  • 6. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase.
    Gaetani GD; Parker JC; Kirkman HN
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3584-7. PubMed ID: 4154443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on erythrocyte glycolysis. VI. Control of glycolysis by ATP level in human erythrocytes.
    Saito T; Minakami S
    J Biochem; 1967 Feb; 61(2):211-9. PubMed ID: 6058200
    [No Abstract]   [Full Text] [Related]  

  • 8. [Regulating factors of methylene blue catalysis in the human red blood cell].
    Roigas H
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):458-64. PubMed ID: 4176844
    [No Abstract]   [Full Text] [Related]  

  • 9. Oxidative metabolism of glucose, fructose and galactose by normal and glucose-6-phosphate dehydrogenase-deficient human red cell haemolysates.
    Sturman JA
    Clin Chim Acta; 1969 Oct; 26(1):135-40. PubMed ID: 4391029
    [No Abstract]   [Full Text] [Related]  

  • 10. Influence of fractionated x-ray doses on phenylhydrazine treated rabbits. II. Effects on the metabolism and on the aging processes of erythrocytes.
    Fantoni A; Segni P; Leoncini G
    J Nucl Biol Med; 1966; 10(3):110-4. PubMed ID: 5978070
    [No Abstract]   [Full Text] [Related]  

  • 11. [Molecular change in glucose-6-phosphate dehydrogenase coming from erythrocytes incubated with methylene blue].
    Gourdin D; Vergnes H
    Bull Soc Chim Biol (Paris); 1970; 52(11):1289-93. PubMed ID: 4396254
    [No Abstract]   [Full Text] [Related]  

  • 12. Continuous measurement of pentose phosphate pathway activity in erythrocytes. An ionization chamber method.
    Davidson WD; Tanaka KR
    J Lab Clin Med; 1969 Jan; 73(1):173-80. PubMed ID: 5762160
    [No Abstract]   [Full Text] [Related]  

  • 13. Erythrocyte glutathione peroxidase deficiency. Biochemical studies on the mechanisms of drug-induced hemolysis.
    Steinberg MH; Necheles TF
    Am J Med; 1971 Apr; 50(4):542-6. PubMed ID: 5572598
    [No Abstract]   [Full Text] [Related]  

  • 14. Erythrocyte glutathione determination in the diagnosis of glucose-6-phosphate dehydrogenase deficiency.
    Bozzi A; Parisi M; Strom R
    Biochem Mol Biol Int; 1996 Oct; 40(3):561-9. PubMed ID: 8908366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primaquine-induced hemolysis of normal erythrocytes in vitro: the requirement for energy.
    Berry DH; Hochstein P
    Biochem Med; 1970 Nov; 4(3):317-26. PubMed ID: 4257451
    [No Abstract]   [Full Text] [Related]  

  • 16. GLUCOSE-6-PHOSPHATE-DEHYDROGENASE ACTIVITY AND AN OSMOTIC ABNORMALITY OF ERYTHROCYTES IN THYROTOXICOSIS.
    BAIKIE AG; LAWSON N
    Lancet; 1965 Jan; 1(7376):86-7. PubMed ID: 14234211
    [No Abstract]   [Full Text] [Related]  

  • 17. Glycogen metabolism in glycogen-rich erythrocytes.
    Moses SW; Bashan N; Gutman A; Ockerman PA
    Blood; 1974 Aug; 44(2):275-84. PubMed ID: 4212036
    [No Abstract]   [Full Text] [Related]  

  • 18. Hexose monophosphate shunt activity in erythrocytes related to cell age.
    Ouwerkerk R; Damen P; de Haan K; Staal GE; Rijksen G
    Eur J Haematol; 1989 Nov; 43(5):441-7. PubMed ID: 2612618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian erythrocyte metabolism and oxidant drugs.
    Harvey JW; Kaneko JJ
    Toxicol Appl Pharmacol; 1977 Nov; 42(2):253-61. PubMed ID: 595005
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of glycolysis in human red cells.
    Yoshikawa H; Minakami S
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):357-75. PubMed ID: 4176832
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.