These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 4272305)

  • 1. Unimpaired de novo synthesis of 4-aminobenzoate in a mutant of Aerobacter aerogenes requiring 4-aminobenzoate for growth; structure of compond A.
    Bacher A; Gilch B; Rappold H; Lingens F
    Z Naturforsch C; 1973; 28(9):614-7. PubMed ID: 4272305
    [No Abstract]   [Full Text] [Related]  

  • 2. Nutritional requirement for 4-aminobenzoate caused by mutation of dihydropteroate synthetase.
    Rappold H; Bacher A
    Z Naturforsch C Biosci; 1976; 31(5-6):285-7. PubMed ID: 134570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biosynthesis of p-aminobenzoic acid. II. Demonstration of an intermediate in a mutant of Aerobacter aerogenes].
    Altendorf KH; Bacher A; Lingens F
    Z Naturforsch B; 1969 Dec; 24(12):1602-4. PubMed ID: 4391584
    [No Abstract]   [Full Text] [Related]  

  • 4. Further studies on anthranilate N-acetyltransferase and the metabolism of N-acetylanthranilic acid in Aerobacter aerogenes.
    Paul RC; Ratledge C
    Biochim Biophys Acta; 1973 Aug; 320(1):9-15. PubMed ID: 4748369
    [No Abstract]   [Full Text] [Related]  

  • 5. N-Acetylanthranilic acid biosynthesis in Aerobacter aerogenes and Escherichia coli.
    Paul RC; Ratledge C
    Biochim Biophys Acta; 1971; 230(3):451-61. PubMed ID: 4931932
    [No Abstract]   [Full Text] [Related]  

  • 6. Biosynthesis of N-acetylanthranilic acid by aromatic auxotrophs of Aerobacter aerogenes and Escherichia coli.
    Paul RC; Ratledge C
    Biochem J; 1970 Oct; 119(5):36P. PubMed ID: 4923918
    [No Abstract]   [Full Text] [Related]  

  • 7. The production of an N-acylanthranilic acid from shikimic acid and the effect on iron deficiency on the biosynthesis of other aromatic compounds by Aerobacter aerogenes.
    Ratledge C
    Biochim Biophys Acta; 1967 Jun; 141(1):55-63. PubMed ID: 6051584
    [No Abstract]   [Full Text] [Related]  

  • 8. Origin of p-aminobenzoic acid from chorismic rather than iso-chorismic acid in Enterobacter aerogenes and Streptomyces species.
    Johanni M; Hofmann P; Leistner E
    Arch Biochem Biophys; 1989 Jun; 271(2):495-501. PubMed ID: 2786373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A possible intermediate in the biosynthesis of tryptophan: 1-deoxy-1-N-o-carboxyphenyl-ribulose.
    GIBSON FW; DOY CH; SEGALL SB
    Nature; 1958 Feb; 181(4608):549-50. PubMed ID: 13517208
    [No Abstract]   [Full Text] [Related]  

  • 10. Derepression of arylsulfatase synthesis in Aerobacter aerogenes by tyramine.
    Adachi T; Murooka Y; Harada T
    J Bacteriol; 1973 Oct; 116(1):19-24. PubMed ID: 4745414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic biodegradation of 3-aminobenzoate by gram-negative bacteria involves intermediate formation of 5-aminosalicylate as ring-cleavage substrate.
    Russ R; Müller C; Knackmuss HJ; Stolz A
    FEMS Microbiol Lett; 1994 Sep; 122(1-2):137-43. PubMed ID: 7958765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intermediate in the conversion of chorismate to p-aminobenzoate.
    Hendler S; Srinivasan PR
    Biochim Biophys Acta; 1967 Aug; 141(3):656-8. PubMed ID: 6049527
    [No Abstract]   [Full Text] [Related]  

  • 13. Decreased riboflavin formation in mutants of Aerobacter (Enterobacter) aerogenes deficient in the butanediol pathway.
    Bryn K; Stormer FC
    Biochim Biophys Acta; 1976 Mar; 428(1):257-9. PubMed ID: 1260022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrate reduction in aerobacter aerogenes. 3. Nitrate reduction, chlorate resistance and formate metabolism in mutant strains.
    Stouthamer AH; Bettenhausen C; van Hartingsveldt J; Riet J van't ; Planta RJ
    Arch Mikrobiol; 1967; 58(3):228-47. PubMed ID: 5600617
    [No Abstract]   [Full Text] [Related]  

  • 15. The pathway of myo-inositol degradation in Aerobacter aerogenes. Ring scission.
    Berman T; Magasanik B
    J Biol Chem; 1966 Feb; 241(4):807-13. PubMed ID: 5905123
    [No Abstract]   [Full Text] [Related]  

  • 16. Inhibition by oxygen of biosynthesis and activity of nitrate-reductase in Aerobacter aerogenes.
    PICHINOTY F; D'ORNANO L
    Nature; 1961 Aug; 191():879-81. PubMed ID: 13735447
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis of RNA, DNA & protein during the growth of normal, viomycin-trained & reverted cultures of Aerobacter aerogenes.
    Agarwal KC; Shukla JP
    Indian J Biochem; 1967 Mar; 4(1):59-60. PubMed ID: 4228208
    [No Abstract]   [Full Text] [Related]  

  • 18. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I.
    Gibson F; Magrath DI
    Biochim Biophys Acta; 1969 Nov; 192(2):175-84. PubMed ID: 4313071
    [No Abstract]   [Full Text] [Related]  

  • 19. The oxidative degradation of benzoate and catechol by Klebsiella aerogenes (Aerobacter aerogenes).
    Grant DJ
    Antonie Van Leeuwenhoek; 1970; 36(1):161-77. PubMed ID: 4987140
    [No Abstract]   [Full Text] [Related]  

  • 20. Isolation and properties of mutants of Aerobacter aerogenes blocked in nitrate assimilation.
    Stouthamer AH
    Antonie Van Leeuwenhoek; 1967; 33(2):227-8. PubMed ID: 4291666
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.