These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 427243)

  • 1. Energy-barrier models for membrane transport.
    Del Castillo LF; Mason EA; Viehland LA
    Biophys Chem; 1979 Jan; 9(2):111-20. PubMed ID: 427243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation of unstirred-layer transport number equations from the Nernst-Planck flux equations.
    Barry PH
    Biophys J; 1998 Jun; 74(6):2903-5. PubMed ID: 9635743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appraisal of equations for neutral solute flux across porous sieving membranes.
    Bresler EH; Mason EA; Wendt RP
    Biophys Chem; 1976 May; 4(3):229-36. PubMed ID: 949524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interpretation of membrane current voltage relations: a Nernst-Planck analysis.
    Attwell D; Jack J
    Prog Biophys Mol Biol; 1978; 34(2):81-107. PubMed ID: 375300
    [No Abstract]   [Full Text] [Related]  

  • 5. A network thermodynamic method for numerical solution of the Nernst-Planck and Poisson equation system with application to ionic transport through membranes.
    Horno J; González-Caballero F; González-Fernández CF
    Eur Biophys J; 1990; 17(6):307-13. PubMed ID: 2307138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid junction potentials calculated from numerical solutions of the Nernst-Planck and Poisson equations.
    Riveros OJ; Croxton TL; Armstrong WM
    J Theor Biol; 1989 Sep; 140(2):221-30. PubMed ID: 2482392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate theory models for ion transport through rigid pores. III. Continuum vs discrete models in single file diffusion.
    Stephan W; Kleutsch B; Frehland E
    J Theor Biol; 1983 Nov; 105(2):287-310. PubMed ID: 6317988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Note on the validity of constant field assumption in relation to the exact solution of Nernst--Planck equations.
    Shinagawa Y
    J Theor Biol; 1979 Nov; 81(2):333-40. PubMed ID: 537375
    [No Abstract]   [Full Text] [Related]  

  • 9. Irreversible thermodynamic model equations of the transport across a horizontally mounted membrane.
    Slezak A
    Biophys Chem; 1989 Oct; 34(2):91-102. PubMed ID: 2624882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparison of jumping and electrodiffusion mechanisms of particle movement in thin membranes. I. Statement of the problem. Stationary transfer].
    Aĭt'ian SKh; Markin VS; Malev VV
    Biofizika; 1976; 21(2):253-6. PubMed ID: 1268271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ionic polarizability on electrodiffusion in lipid bilayer membranes.
    Bradshaw RW; Robertson CR
    J Membr Biol; 1975 Dec; 25(1-2):93-114. PubMed ID: 1214289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of current-voltage diagrams in locating peak energy barriers in cell membranes.
    Ginsburg S; Noble D
    J Membr Biol; 1976 Nov; 29(3):211-29. PubMed ID: 994177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass transfer in the cornea. I. Interacting ion flows in an arbitrarily charged membrane.
    Friedman MH
    Biophys J; 1970 Nov; 10(11):1013-28. PubMed ID: 5471695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions.
    Levitt DG
    Biophys J; 1978 May; 22(2):209-19. PubMed ID: 656542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Comparison of jumping and electrodiffusion mechanisms of particle movement in thin membranes. III. Potential clamping in a uniform membrane].
    Aĭt'ian SKh; Markin VS; Malev VV
    Biofizika; 1976; 21(2):261-5. PubMed ID: 1268273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Generalization of the Donnan distribution and Nernst-Planck flux equations within the framework of thermodynamics of irreversible processes].
    Albrecht-Bühler G
    Biophysik; 1968 May; 4(4):289-95. PubMed ID: 5663923
    [No Abstract]   [Full Text] [Related]  

  • 17. The theory of transport phenomena in biological membranes. I. The passive transport and resting potential.
    Volkenstein MV; Fishman SN
    Biochim Biophys Acta; 1970 Mar; 203(1):1-9. PubMed ID: 5445677
    [No Abstract]   [Full Text] [Related]  

  • 18. Flux ratio theorems for nonlinear membrane transport under nonstationary conditions.
    Bass L; McNabb A
    J Theor Biol; 1988 Jul; 133(2):185-91. PubMed ID: 3236892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium and steady state thermodynamics of active transport systems studied on simple models simulating Ca2+ transport through sarcoplasmic reticulum membranes.
    Alonso GL; Hecht JP
    J Theor Biol; 1986 May; 120(2):191-203. PubMed ID: 3784580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparison of jumping and electrodiffusion mechanisms of particle movement in thin membranes. II. Potential clamping. Jumping and continuous uniform mechanism].
    Aĭt'ian SKh; Markin VS; Malev VV
    Biofizika; 1976; 21(2):257-60. PubMed ID: 1268272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.