These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 4272543)
1. Membrane fluidity, cholesterol and allosteric transitions of membrane-bound Mg2+-ATPase, (Na+ + K+)-ATPase and acetylcholinesterase from rat erythrocytes. Bloj B; Morero RD; Farías RN FEBS Lett; 1973 Dec; 38(1):101-5. PubMed ID: 4272543 [No Abstract] [Full Text] [Related]
2. Membrane lipid fatty acids and regulation of membrane-bound enzymes. Allosteric behaviour of erythrocyte Mg 2+ -ATPase, (Na + +K + )-ATPase and acetylcholinesterase from rats fed different fat-supplemented diets. Bloj B; Morero RD; Farías RN; Trucco RE Biochim Biophys Acta; 1973 Jun; 311(1):67-79. PubMed ID: 4268761 [No Abstract] [Full Text] [Related]
3. Hormone action and membrane fluidity: effect of insulin and cortisol on the Hill coefficients of rat erythrocyte membrane-bound acetylcholinesterase and (Na+ + K+)-ATPase. Massa EM; Morero RD; Bloj B; Farías RN Biochem Biophys Res Commun; 1975 Sep; 66(1):115-22. PubMed ID: 126062 [No Abstract] [Full Text] [Related]
4. Kinetic modifications of the acetylcholinesterase and (Ca2+ + Mg2+)-ATPase in rat erythrocytes by cholesterol feeding. Bloj B; Galo MG; Morero RD; Farias RN J Nutr; 1976 Dec; 106(12):1827-34. PubMed ID: 136502 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneous effect of dietary cholesterol on acetylcholinesterase and ATPases of rat erythrocytes: Arrhenius plots. Bloj B; Galo MG; Morero RD; Farías RN J Nutr; 1979 Jan; 109(1):63-9. PubMed ID: 155150 [No Abstract] [Full Text] [Related]
6. The effect of fat deprivation on the allosteric inhibition by fluoride of the (Mg2+)-ATPase and (Na+ and K+)-ATPase from rat erythrocytes. Farias RN; Goldemberg AL; Trucco RE Arch Biochem Biophys; 1970 Jul; 139(1):38-44. PubMed ID: 4248575 [No Abstract] [Full Text] [Related]
7. The allosteric transitions from membrane-bound enzymes: behavior of erythrocyte acetylcholinesterase from fat-deficient rats. Morero RD; Bloj B; Farías RN; Trucco RE Biochim Biophys Acta; 1972 Sep; 282(1):157-65. PubMed ID: 5070074 [No Abstract] [Full Text] [Related]
8. Regulation of allosteric membrane-bound enzymes through changes in membrane lipid compostition. Farías RN; Bloj B; Morero RD; Siñeriz F; Trucco RE Biochim Biophys Acta; 1975 Jun; 415(2):231-51. PubMed ID: 167865 [No Abstract] [Full Text] [Related]
9. Membrane structure and function with different lipid-supplemented diets. Farías RN; Trucco RE Adv Exp Med Biol; 1977; 83():591-607. PubMed ID: 144429 [No Abstract] [Full Text] [Related]
10. [Studies on Na+-K+-ATPase and the acetylcholinesterase activity in erythrocyte membranes in saturnine anemia]. Secchi GC; Ambrosi L; Rezzonico A Med Lav; 1968 Oct; 59(10):593-8. PubMed ID: 4237685 [No Abstract] [Full Text] [Related]
11. Alteration of membrane integrity by delta1-tetrahydrocannabinol. Laurent B; Roy PE Int J Clin Pharmacol Biopharm; 1975 Jul; 12(1-2):261-6. PubMed ID: 126214 [TBL] [Abstract][Full Text] [Related]
12. Membrane cooperative enzymes as a tool for the investigation of membrane structure and related phenomena. Farías RN Adv Lipid Res; 1980; 17():251-82. PubMed ID: 6247883 [No Abstract] [Full Text] [Related]
13. Pesticide action and membrane fluidity. Allosteric behavior of rat erythrocyte membrane-bound acetylcholinesterase in the presence of organophosphorous compounds. Domenech CE; Machado de Domenech EE; Balegno HF FEBS Lett; 1977 Mar; 74(2):243-6. PubMed ID: 849789 [No Abstract] [Full Text] [Related]
14. [Requirement of Na+ and K+ ions for reconstitution of transport ATPase following solubilization by sodium deoxycholate]. Philippot J Helv Physiol Pharmacol Acta; 1967; 25(4):CR426+. PubMed ID: 4231340 [No Abstract] [Full Text] [Related]
15. The effects of an antiserum to Na+, K+-ATPase on the ion-transporting and hydrolytic activities of the enzyme. Glynn IM; Karlish SJ; Cavieres JD; Ellory JC; Lew VL; Jorgensen PL Ann N Y Acad Sci; 1974; 242(0):357-71. PubMed ID: 4279595 [No Abstract] [Full Text] [Related]
16. Variability in ouabain-induced inhibition of human erythrocyte membrane (Na+ K+)-ATPase. Schrier SL; Giberman E; Katchalski E Biochim Biophys Acta; 1969 Jul; 183(2):397-400. PubMed ID: 4239999 [No Abstract] [Full Text] [Related]
17. Influence of adrenalectomy upon rat erythrocyte Na+ and K+ content, Na+ efflux rate and Mg2+- and (Na+ plus K+)-Mg2+-ATPase activities. Radcliffe MA Biochim Biophys Acta; 1974 Mar; 339(3):303-10. PubMed ID: 4276128 [No Abstract] [Full Text] [Related]
18. Effects of monovalent cations on the (Mg 2+ + Ca 2+ )-dependent ATPase of the red cell membrane. Bond GH; Green JW Biochim Biophys Acta; 1971 Aug; 241(2):393-8. PubMed ID: 4258480 [No Abstract] [Full Text] [Related]
19. Human erythrocyte membrane bound enzyme acetylcholinesterase. Heller M; Hanahan DJ Biochim Biophys Acta; 1972 Jan; 255(1):251-72. PubMed ID: 4622094 [No Abstract] [Full Text] [Related]
20. Solubilization of acetylcholinesterase from human erythrocytes by Triton X-100 in potassium chloride solution. Wright DL; Plummer DT Biochim Biophys Acta; 1971 Feb; 261(2):398-401. PubMed ID: 5144280 [No Abstract] [Full Text] [Related] [Next] [New Search]