These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 427266)

  • 1. Mathematical model of cell growth and phosphatase biosynthesis in Saccharomyces carlsbergensis under phosphate limitation.
    Toda K; Yabe I
    Biotechnol Bioeng; 1979 Mar; 21(3):487-502. PubMed ID: 427266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of exocellular acid phosphatase activity on Saccharomyces mellis after treatment of the organism with reagents that affect the cell surface.
    Weimberg R
    J Bacteriol; 1971 Dec; 108(3):1097-106. PubMed ID: 5139532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production.
    Liu YS; Wu JY
    Biotechnol Bioeng; 2008 Dec; 101(5):996-1004. PubMed ID: 18683256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Invertase biosynthesis by Saccharomyces carlsbergensis in batch and continuous cultures.
    Toda K
    Biotechnol Bioeng; 1976 Aug; 18(8):1103-15. PubMed ID: 953170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of certain growth conditions on the phosphatase activity of Streptococcus mutans grown in batch and continuous culture.
    Greenman J; Melville TH
    Microbios; 1978; 21(83):23-32. PubMed ID: 375033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate and carbon source regulation of alkaline phosphatase and phospholipase in Vibrio vulnificus.
    Oh WS; Im YS; Yeon KY; Yoon YJ; Kim JW
    J Microbiol; 2007 Aug; 45(4):311-7. PubMed ID: 17846584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of cashew apple juice for the production of fuel ethanol.
    Pinheiro AD; Rocha MV; Macedo GR; Gonçalves LR
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):227-34. PubMed ID: 18418754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repression of the acid phosphatase of Saccharomyces bisporus in relation to the polyphosphate content of the cells.
    Weimberg R
    Can J Microbiol; 1976 Jun; 22(6):867-72. PubMed ID: 1277007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation and characterization of acid and alkaline phosphatase in yeast.
    Schurr A; Yagil E
    J Gen Microbiol; 1971 Mar; 65(3):291-303. PubMed ID: 4997392
    [No Abstract]   [Full Text] [Related]  

  • 12. Very high ethanol productivity in an innovative continuous two-stage bioreactor with cell recycle.
    Ben Chaabane F; Aldiguier AS; Alfenore S; Cameleyre X; Blanc P; Bideaux C; Guillouet SE; Roux G; Molina-Jouve C
    Bioprocess Biosyst Eng; 2006 Jun; 29(1):49-57. PubMed ID: 16598511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the inhibition mechanisms of viomycin synthesis by inorganic phosphate.
    Paśś L; Raczyńska-Bojanowska K
    Acta Biochim Pol; 1968; 15(4):355-67. PubMed ID: 4305782
    [No Abstract]   [Full Text] [Related]  

  • 15. Kalman filter based glucose control at small set points during fed-batch cultivation of Saccharomyces cerevisiae.
    Arndt M; Hitzmann B
    Biotechnol Prog; 2004; 20(1):377-83. PubMed ID: 14763866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respirometric evaluation and modeling of glucose utilization by Escherichia coli under aerobic and mesophilic cultivation conditions.
    Insel G; Celikyilmaz G; Ucisik-Akkaya E; Yesiladali K; Cakar ZP; Tamerler C; Orhon D
    Biotechnol Bioeng; 2007 Jan; 96(1):94-105. PubMed ID: 16937401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol.
    Panagiotou G; Villas-Bôas SG; Christakopoulos P; Nielsen J; Olsson L
    J Biotechnol; 2005 Feb; 115(4):425-34. PubMed ID: 15639104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process.
    Alfenore S; Cameleyre X; Benbadis L; Bideaux C; Uribelarrea JL; Goma G; Molina-Jouve C; Guillouet SE
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):537-42. PubMed ID: 12879304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of yeast Brettanomyces bruxellensis growth at different acetic acid concentrations under aerobic and anaerobic conditions.
    Yahara GA; Javier MA; Tulio MJ; Javier GR; Guadalupe AU
    Bioprocess Biosyst Eng; 2007 Nov; 30(6):389-95. PubMed ID: 17622565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of flow rate pattern on glucose-6-phosphate dehydrogenase synthesis in fed-batch culture of recombinant Saccharomyces cerevisiae.
    Miguel AS; Martins das Neves LC; Vitolo M; Pessoa A
    Biotechnol Prog; 2003; 19(2):320-4. PubMed ID: 12675566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.