These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 4273117)
1. Absolute pitch in humans, its variations and possible connections with other known rhythmic phenomena. Wynn VT Prog Neurobiol; 1973; 1(2):111-49. PubMed ID: 4273117 [No Abstract] [Full Text] [Related]
3. The physiology of auditory frequency analysis. Kay RH Prog Biophys Mol Biol; 1974; 28():109-88. PubMed ID: 4617246 [No Abstract] [Full Text] [Related]
4. Measurements of small variations in 'absolute' pitch. Wynn VT J Physiol; 1972 Feb; 220(3):627-37. PubMed ID: 5016039 [TBL] [Abstract][Full Text] [Related]
5. A study of crossed olivocochlear bundle on adaptation of auditory action potentials. Dayal VS Laryngoscope; 1972 Apr; 82(4):693-711. PubMed ID: 5023216 [No Abstract] [Full Text] [Related]
6. Sensory neural organization of the cochlea. Spoendlin H J Laryngol Otol; 1979 Sep; 93(9):853-77. PubMed ID: 390073 [No Abstract] [Full Text] [Related]
7. Robust sound onset detection using leaky integrate-and-fire neurons with depressing synapses. Smith LS; Fraser DS IEEE Trans Neural Netw; 2004 Sep; 15(5):1125-34. PubMed ID: 15484889 [TBL] [Abstract][Full Text] [Related]
8. Diverse responses of single auditory afferent fibres to electrical stimulation of the inferior colliculus in guinea-pig. Mulders WH; Robertson D Exp Brain Res; 2005 Jan; 160(2):235-44. PubMed ID: 15309356 [TBL] [Abstract][Full Text] [Related]
9. A computer model of medial efferent suppression in the mammalian auditory system. Ferry RT; Meddis R J Acoust Soc Am; 2007 Dec; 122(6):3519-26. PubMed ID: 18247760 [TBL] [Abstract][Full Text] [Related]
10. Efferent desensitization of auditory nerve fibre responses in the cochlea of the turtle Pseudemys scripta elegans. Art JJ; Fettiplace R J Physiol; 1984 Nov; 356():507-23. PubMed ID: 6520796 [TBL] [Abstract][Full Text] [Related]
11. [Anatomic adaptation of the hearing organ for the perception of high frequencies. A comparative anatomic study on bats]. Firbas W Monatsschr Ohrenheilkd Laryngorhinol; 1972; 106(3):105-56. PubMed ID: 5049884 [No Abstract] [Full Text] [Related]
13. Detection of signals in noisy backgrounds: a role for centrifugal fibres. Comis SD J Laryngol Otol; 1973 Jun; 87(6):529-34. PubMed ID: 4718439 [No Abstract] [Full Text] [Related]
14. Neuroanatomy of the auditory system. Report on workshop. Arch Otolaryngol; 1973 Dec; 98(6):397-413. PubMed ID: 4593314 [No Abstract] [Full Text] [Related]
15. Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. Nelson PC; Carney LH J Neurophysiol; 2007 Jan; 97(1):522-39. PubMed ID: 17079342 [TBL] [Abstract][Full Text] [Related]
16. Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects. Williams EA; Brookes GB; Prasher DK Acta Otolaryngol; 1994 Mar; 114(2):121-9. PubMed ID: 8203191 [TBL] [Abstract][Full Text] [Related]
17. Physiology of cochlear efferent and afferent neurons: direct comparisons in the same animal. Liberman MC Hear Res; 1988 Jul; 34(2):179-91. PubMed ID: 3170360 [TBL] [Abstract][Full Text] [Related]
18. Behavioral auditory function after transection of crossed olivo-cochlear bundle in the cat. IV. Study on pure-tone frequency discrimination. Igarashi M; Cranford JL; Nakai Y; Alford BR Acta Otolaryngol; 1979; 87(1-2):79-83. PubMed ID: 760381 [TBL] [Abstract][Full Text] [Related]
19. Neural Microstates Govern Perception of Auditory Input without Rhythmic Structure. Henry MJ; Herrmann B; Obleser J J Neurosci; 2016 Jan; 36(3):860-71. PubMed ID: 26791216 [TBL] [Abstract][Full Text] [Related]
20. Physiological correlates of auditory stimulus periodicity. Hind JE Audiology; 1972; 11(1):42-57. PubMed ID: 4206204 [No Abstract] [Full Text] [Related] [Next] [New Search]