These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 4274115)

  • 1. K+-independent effects of valinomycin in photosynthetic systems.
    Keister DL; Minton NJ
    J Bioenerg; 1970 Oct; 1(4):367-77. PubMed ID: 4274115
    [No Abstract]   [Full Text] [Related]  

  • 2. Demonstration of acid-base phosphorylation in chromatophores in the presence of a K+ diffusion potential.
    Leiser M; Gromet-Elhanan Z
    FEBS Lett; 1974 Aug; 43(3):267-70. PubMed ID: 4213021
    [No Abstract]   [Full Text] [Related]  

  • 3. Changes in the fluorescence of atebrin and of anilino-naphthalene sulfonate reflecting two different light-induced processes in Rhodospirillum rubrum chromatophores.
    Gromet-Elhanan Z
    Eur J Biochem; 1972 Jan; 25(1):84-8. PubMed ID: 4623434
    [No Abstract]   [Full Text] [Related]  

  • 4. Delta pH and membrane potential in bacterial chromatophores.
    Schuldiner S; Padan E; Rottenberg H; Gromet-Elhanan Z; Avron M
    FEBS Lett; 1974 Dec; 49(2):174-7. PubMed ID: 4216516
    [No Abstract]   [Full Text] [Related]  

  • 5. Energy-linked reactions in photosynthetic bacteria. IX. Pi-PPi exchange in Rhodospirillum rubrum.
    Keister DL; Raveed NJ
    J Biol Chem; 1974 Oct; 249(20):6454-8. PubMed ID: 4371026
    [No Abstract]   [Full Text] [Related]  

  • 6. Differences in sensitivity to valinomycin and nonactin of various photophosphorylating and photoreducing systems of Rhodospirillum rubrum chromatpohores.
    Gromet-Elhanan Z
    Biochim Biophys Acta; 1970 Nov; 223(1):174-82. PubMed ID: 4320754
    [No Abstract]   [Full Text] [Related]  

  • 7. PPase, ATPase, and photophosphorylation in chromatophores of Rhodospirillum rubrum: inactivation by phospholipase A; reconstitution by phospholipids.
    Klemme B; Klemme JH; San Pietro A
    Arch Biochem Biophys; 1971 May; 144(1):339-42. PubMed ID: 4256089
    [No Abstract]   [Full Text] [Related]  

  • 8. The relation of millisecond delayed light emission to light-induced ion accumulations in chloroplasts.
    Felker P; Izawa S; Good NE; Haug A
    Arch Biochem Biophys; 1974 Jun; 162(2):345-56. PubMed ID: 4135050
    [No Abstract]   [Full Text] [Related]  

  • 9. The permeability of Rhodospirillum rubrum chromatophores to thiocyanate and perchlorate as detected by light-induced fluorochrome fluorescence changes and by photophosphorylation.
    Gromet-Elhanan Z
    Biochim Biophys Acta; 1972 Jul; 275(1):125-9. PubMed ID: 4340267
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of the proton-translocating adenosine triphosphatase from chromatophores of photosynthetic bacteria by free bivalent cations and adenosine triphosphate [proceedings].
    Webster GD; Edwards PA; Jackson JB
    Biochem Soc Trans; 1977; 5(5):1527-9. PubMed ID: 144630
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for a two-directional hydrogen ion transport in chloroplasts of Euglena gracilis.
    Kahn JS
    Biochim Biophys Acta; 1971 Aug; 245(1):144-50. PubMed ID: 5002354
    [No Abstract]   [Full Text] [Related]  

  • 12. [Absorption changes in spectral forms of bacteriochlorophyll in Rhodospirillum rubrum chromatophores].
    Barskiĭ EL; Samuilov VD
    Biokhimiia; 1972; 37(5):1005-11. PubMed ID: 4629048
    [No Abstract]   [Full Text] [Related]  

  • 13. Sensitive measurement of flash induced photophosphorylation in bacterial chromatophores by firefly luciferase.
    Lundin A; Thore A; Baltscheffsky M
    FEBS Lett; 1977 Jul; 79(1):73-6. PubMed ID: 408188
    [No Abstract]   [Full Text] [Related]  

  • 14. Control of proton translocation induced by ATPase activity in chloroplasts.
    Carmeli C; Lifshitz Y; Gepshtein A
    Biochim Biophys Acta; 1975 Feb; 376(2):249-58. PubMed ID: 234748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some electrophysiological aspects of energy coupling and ion transport in intact chloroplasts.
    Vredenberg WJ
    Biochem Soc Trans; 1977; 5(2):499-503. PubMed ID: 20373
    [No Abstract]   [Full Text] [Related]  

  • 16. Synergistic uncoupling of spinach chloroplasts by combinations of photophosphorylation inhibitors and carbonyl cyanide p-trifluoromethoxyphenylhydrazone.
    Andreo CS; Vallejos RH
    Arch Biochem Biophys; 1975 Jun; 168(2):677-84. PubMed ID: 237489
    [No Abstract]   [Full Text] [Related]  

  • 17. Uncoupling and charge transfer in bacterial chromatophores.
    Montal M; Nishimura M; Chance B
    Biochim Biophys Acta; 1970 Nov; 223(1):183-8. PubMed ID: 5484051
    [No Abstract]   [Full Text] [Related]  

  • 18. Ion movements in isolated chloroplasts. 3. Ionophore-induced ion uptake and its effect on photophosphorylation.
    Degani H; Shavit N
    Arch Biochem Biophys; 1972 Sep; 152(1):339-46. PubMed ID: 5072705
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of photophosphorylation coupling factor in energy conversion by depleted chromatophores of Rhodospirillum rubrum.
    Gromet-Elhanan Z
    J Biol Chem; 1974 Apr; 249(8):2522-7. PubMed ID: 4362685
    [No Abstract]   [Full Text] [Related]  

  • 20. Inhibition of the membrane-bound Mg++ -ATPase of chloroplasts by lipophilic chelators.
    Bering CL; Delley RA; Crane FL
    Biochem Biophys Res Commun; 1975 Apr; 63(3):736-41. PubMed ID: 236748
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.