These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 427592)

  • 1. Electrophysiological and biochemical responses of noradrenergic neurons to a non-amphetamine CNS stimulant.
    German DC; Sanghera MK; Kiser RS; McMillen BA; Shore PA
    Brain Res; 1979 Apr; 166(2):331-9. PubMed ID: 427592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopaminergic neuronal responses to a non-amphetamine CNS stimulant.
    German DC; Harden H; Sanghera MK; Mann D; Kiser RS; Miller HH; Shore PA
    J Neural Transm; 1979; 44(1-2):39-49. PubMed ID: 35584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of subchronic amphetamine or amfonelic acid on rat brain dopaminergic and serotonergic function.
    McMillen BA; Scott SM; Williams HL
    J Neural Transm Gen Sect; 1991; 83(1-2):55-66. PubMed ID: 2018630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of long-term desipramine administration on noradrenergic neurotransmission: electrophysiological studies in the rat brain.
    Lacroix D; Blier P; Curet O; de Montigny C
    J Pharmacol Exp Ther; 1991 Jun; 257(3):1081-90. PubMed ID: 1646320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of desipramine and amphetamine on noradrenergic neurotransmission: electrophysiological studies in the rat brain.
    Curet O; De Montigny C; Blier P
    Eur J Pharmacol; 1992 Oct; 221(1):59-70. PubMed ID: 1333978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in norepinephrine and dopamine neurotransmitter storage systems.
    Sanghera MK; German DC; Kiser RS; Shore PA
    Brain Res Bull; 1979; 4(2):217-21. PubMed ID: 223744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chronic desipramine treatment on rat brain noradrenergic responses to alpha-adrenergic drugs.
    McMillen BA; Warnack W; German DC; Shore PA
    Eur J Pharmacol; 1980 Feb; 61(3):239-46. PubMed ID: 6102522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noradrenergic Modulation of Dopamine Transmission Evoked by Electrical Stimulation of the Locus Coeruleus in the Rat Brain.
    Park JW; Bhimani RV; Park J
    ACS Chem Neurosci; 2017 Sep; 8(9):1913-1924. PubMed ID: 28594540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amfonelic acid, a non-amphetamine stimulant, has marked effects on brain dopamine metabolism but not noradrenaline metabolism: association with differences in neuronal storage systems.
    McMillen BA; Shore PA
    J Pharm Pharmacol; 1978 Jul; 30(7):464-6. PubMed ID: 27622
    [No Abstract]   [Full Text] [Related]  

  • 10. Cross-talk between dopaminergic and noradrenergic systems in the rat ventral tegmental area, locus ceruleus, and dorsal hippocampus.
    Guiard BP; El Mansari M; Blier P
    Mol Pharmacol; 2008 Nov; 74(5):1463-75. PubMed ID: 18703671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological investigation on the role of dopamine in the rat locus coeruleus.
    Milon H; McRae-Degueurce A
    Neurosci Lett; 1982 Jun; 30(3):297-301. PubMed ID: 6810240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomoxetine modulates spontaneous and sensory-evoked discharge of locus coeruleus noradrenergic neurons.
    Bari A; Aston-Jones G
    Neuropharmacology; 2013 Jan; 64(1):53-64. PubMed ID: 22820275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions.
    Guiard BP; El Mansari M; Merali Z; Blier P
    Int J Neuropsychopharmacol; 2008 Aug; 11(5):625-39. PubMed ID: 18205979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Retrieval of Taste Associative Memory by Chemogenetic Activation of Locus Coeruleus Norepinephrine Neurons.
    Fukabori R; Iguchi Y; Kato S; Takahashi K; Eifuku S; Tsuji S; Hazama A; Uchigashima M; Watanabe M; Mizuma H; Cui Y; Onoe H; Hikishima K; Yasoshima Y; Osanai M; Inagaki R; Fukunaga K; Nishijo T; Momiyama T; Benton R; Kobayashi K
    J Neurosci; 2020 Oct; 40(43):8367-8385. PubMed ID: 32994339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological evidence for locus coeruleus norepinephrine autoreceptor subsensitivity following subchronic administration of D-amphetamine.
    Ramirez OA; Wang RY
    Brain Res; 1986 Oct; 385(2):415-9. PubMed ID: 3022876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DMI, Wy-45,030, Wy-45,881 and ciramadol inhibit locus coeruleus neuronal activity.
    Haskins JT; Moyer JA; Muth EA; Sigg EB
    Eur J Pharmacol; 1985 Sep; 115(2-3):139-46. PubMed ID: 2998818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of norepinephrine and serotonin, but not dopamine, neuron firing by sustained bupropion treatment.
    Dong J; Blier P
    Psychopharmacology (Berl); 2001 Apr; 155(1):52-7. PubMed ID: 11374336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of amfonelic acid and GBR 12909 on the haloperidol- and clozapine-induced activation of dopamine neurons.
    Gudelsky GA; Nwajei EE; Defife K; Nash JF
    Psychopharmacol Bull; 1992; 28(3):275-9. PubMed ID: 1480731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete local application of corticotropin-releasing factor increases locus coeruleus discharge and extracellular norepinephrine in rat hippocampus.
    Page ME; Abercrombie ED
    Synapse; 1999 Sep; 33(4):304-13. PubMed ID: 10421711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic methamphetamine exposure decreases high affinity uptake function in norepinephrine afferents in the cerebellar cortex: an electrophysiological and electrochemical study.
    Wang Y; Chou J; Jeng CH; Morales M; Wang JY
    Neuropharmacology; 2000 Aug; 39(11):2112-23. PubMed ID: 10963754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.