These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 427646)

  • 1. Increased pressor responses to pressor agents in spontaneously hypertensive rats.
    Kubo T
    Can J Physiol Pharmacol; 1979 Jan; 57(1):59-64. PubMed ID: 427646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood pressure responsiveness during the development of hypertension in the conscious spontaneously hypertensive rat.
    Toal CB; Leenen FH
    Can J Physiol Pharmacol; 1985 Oct; 63(10):1258-62. PubMed ID: 3907806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of the renin-angiotensin system induced by streptozotocin treatment in neonatal spontaneously hypertensive rats.
    Takata Y; Yamashita Y; Takishita S; Tomita Y; Tsuchihashi T; Nakao Y; Iwase M; Sadoshima S; Fujishima M
    Jpn Circ J; 1990 Feb; 54(2):192-200. PubMed ID: 1972412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased pressor responses to nicotine in spontaneously hypertensive rats.
    Kubo T; Misu Y
    Jpn J Pharmacol; 1981 Apr; 31(2):221-6. PubMed ID: 7311140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arterial hypertrophy and pressor responsiveness during development of hypertension in spontaneously hypertensive rats.
    Leenen FH; Yuan B; Tsoporis J; Lee RM
    J Hypertens; 1994 Jan; 12(1):23-32. PubMed ID: 7908913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of the sympathetic nervous system to vascular resistance in conscious young and adult spontaneously hypertensive rats.
    Touw KB; Haywood JR; Shaffer RA; Brody MJ
    Hypertension; 1980; 2(4):408-18. PubMed ID: 7399624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary sodium restriction, blood pressure and sympathetic activity in spontaneously hypertensive rats.
    Toal CB; Leenen FH
    J Hypertens; 1987 Feb; 5(1):107-13. PubMed ID: 2884252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmented central cholinergic mechanisms in spontaneously hypertensive rats. Involvement of deranged noradrenergic mechanisms in the brain.
    Takahashi H; Inoue A; Takeda K; Okajima H; Sasaki S; Yoshimura M; Nakagawa M; Ijichi H
    Jpn Heart J; 1984 May; 25(3):397-410. PubMed ID: 6088825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the anti-vasoconstrictor activity of BRL 34915 in spontaneously hypertensive rats; a comparison with nifedipine.
    Buckingham RE
    Br J Pharmacol; 1988 Mar; 93(3):541-52. PubMed ID: 3370388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The adrenergic nervous control of fluid transport in the small intestine of normotensive and spontaneously hypertensive rats.
    Sjövall H; Ely D; Westlander G; Köhlin T; Jodal M; Lundgren O
    Acta Physiol Scand; 1986 Apr; 126(4):557-64. PubMed ID: 2872773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of intraventricular and intraspinal 6-hydroxydopamine on blood pressure of apontaneously hypertensive rats.
    Kubo T; Hashimoto M
    Arch Int Pharmacodyn Ther; 1978 Mar; 232(1):166-76. PubMed ID: 666457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic salt loading and central adrenergic mechanisms in the spontaneously hypertensive rat.
    Gradin K; Elam M; Persson B
    Acta Pharmacol Toxicol (Copenh); 1985 Mar; 56(3):204-13. PubMed ID: 2861708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the vascular renin-angiotensin system in beta adrenergic receptor-mediated facilitation of vascular neurotransmission in spontaneously hypertensive rats.
    Kawasaki H; Cline WH; Su C
    J Pharmacol Exp Ther; 1984 Oct; 231(1):23-32. PubMed ID: 6149303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nicotine on brain stem mechanisms of cardiovascular control.
    Tseng CJ; Appalsamy M; Robertson D; Mosqueda-Garcia R
    J Pharmacol Exp Ther; 1993 Jun; 265(3):1511-8. PubMed ID: 8099622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of central amiloride-sensitive transport systems to the development of hypertension in spontaneously hypertensive rats.
    Seto S; Kitamura S; Nagao S; Nonaka M; Akahoshi M; Yano K
    Brain Res; 2001 Jul; 906(1-2):164-9. PubMed ID: 11430874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced slow-pressor response to angiotensin II in spontaneously hypertensive rats.
    Li P; Jackson EK
    J Pharmacol Exp Ther; 1989 Dec; 251(3):909-21. PubMed ID: 2557422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of angiotensin II in ventrolateral medulla of spontaneously hypertensive rats.
    Muratani H; Averill DB; Ferrario CM
    Am J Physiol; 1991 May; 260(5 Pt 2):R977-84. PubMed ID: 1674644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflexes fail to reduce pressor activity of vasopressin in spontaneous hypertension.
    Datar S; Chiu EK; McNeill JR
    Am J Physiol; 1985 Jan; 248(1 Pt 2):H49-54. PubMed ID: 3970174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurohumoral contributions to chronic angiotensin-induced hypertension.
    Bruner CA; Fink GD
    Am J Physiol; 1986 Jan; 250(1 Pt 2):H52-61. PubMed ID: 2867686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of afferent renal nerves in spontaneous hypertension in rats.
    Janssen BJ; van Essen H; Vervoort-Peters LH; Struyker-Boudier HA; Smits JF
    Hypertension; 1989 Apr; 13(4):327-33. PubMed ID: 2564373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.