These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 4276636)

  • 21. Reduction in hepatic microsomal cytochromes P-450 and b5 in rats exposed to 1,2-dibromo-3-chloropropane and carbon tetrachloride: enhancement of effect by pretreatment with phenobarbital.
    Moody DE; Head B; Smuckler EA
    J Environ Pathol Toxicol; 1979 Dec; 3(1-2):177-90. PubMed ID: 121136
    [No Abstract]   [Full Text] [Related]  

  • 22. 2-Propanol treatment induces selectively the metabolism of carbon tetrachloride to phosgene. Implications for carbon tetrachloride hepatotoxicity.
    Harris RN; Anders MW
    Drug Metab Dispos; 1981; 9(6):551-6. PubMed ID: 6120815
    [No Abstract]   [Full Text] [Related]  

  • 23. The binding of metyrapone to cytochrome P-450 and its inhibitory action on microsomal hepatic mixed function oxidation reactions.
    Hildebrandt AG
    Biochem Soc Symp; 1972; 34():79-102. PubMed ID: 4570969
    [No Abstract]   [Full Text] [Related]  

  • 24. Studies on the molecular function of cytochrome P-450 during drug metabolism.
    Estabrook RW; Matsubara T; Mason JI; Werringloer J; Baron J
    Drug Metab Dispos; 1973; 1(1):98-110. PubMed ID: 4149428
    [No Abstract]   [Full Text] [Related]  

  • 25. Kinetics and mechanism of carbon monoxide binding to purified liver microsomal cytochrome P-450 isozymes.
    Gray RD
    J Biol Chem; 1982 Jan; 257(2):1086-94. PubMed ID: 7054168
    [No Abstract]   [Full Text] [Related]  

  • 26. The stimulation of lipid peroxidation produced by dimethylnitrosamine in rat liver microsomes in vitro: the effects of promethazine and inhibitors of drug metabolism, and a comparison with previous studies using carbon tetrachloride.
    Jose PJ; Slater TF
    Xenobiotica; 1973 Jun; 3(6):357-66. PubMed ID: 4148105
    [No Abstract]   [Full Text] [Related]  

  • 27. [The effect of silymarine on contents and functions of some microsomal liver enzymes influenced by carbon tetrachloride or halothane].
    Janiak B; Kessler B; Kunz W; Schnieders B
    Arzneimittelforschung; 1973 Sep; 23(9):1322-6. PubMed ID: 4801229
    [No Abstract]   [Full Text] [Related]  

  • 28. Suicide inactivation of cytochrome P-450 by methoxsalen. Evidence for the covalent binding of a reactive intermediate to the protein moiety.
    Labbe G; Descatoire V; Beaune P; Letteron P; Larrey D; Pessayre D
    J Pharmacol Exp Ther; 1989 Sep; 250(3):1034-42. PubMed ID: 2506333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of 3,5,5-trimethylhexanoyl-ferrocene by rat liver: release of iron from 3,5,5-trimethylhexanoyl-ferrocene by a microsomal, phenobarbital-inducible cytochrome P-450.
    Cable EE; Isom HC
    Drug Metab Dispos; 1999 Feb; 27(2):255-60. PubMed ID: 9929512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of nitrogen containing compounds to microsomal cytochromes.
    Temple DJ
    Xenobiotica; 1971; 1(4):507-20. PubMed ID: 4950797
    [No Abstract]   [Full Text] [Related]  

  • 31. Microsomal lipid peroxidation. II. Stimulation by carbon tetrachloride.
    Kornbrust DJ; Mavis RD
    Mol Pharmacol; 1980 May; 17(3):408-14. PubMed ID: 7393216
    [No Abstract]   [Full Text] [Related]  

  • 32. Propylene glycol as a drug solvent in the study of hepatic microsomal enzyme metabolism in the rat.
    Dean ME; Stock BH
    Toxicol Appl Pharmacol; 1974 Apr; 28(1):44-52. PubMed ID: 4853909
    [No Abstract]   [Full Text] [Related]  

  • 33. The molecular organization of the active sites of the microsomal cytochrome P-450.
    Raikhman LM; Annaev B; Belova VS; Borukaeva MR
    Mol Biol; 1973; 7(3):320-9. PubMed ID: 4359075
    [No Abstract]   [Full Text] [Related]  

  • 34. Metyrapone interaction with hepatic microsomal cytochrome P-450 from rats treated with phenobarbital.
    Hildebrandt AG; Leibman KC; Estabrook RW
    Biochem Biophys Res Commun; 1969 Oct; 37(3):477-85. PubMed ID: 5349284
    [No Abstract]   [Full Text] [Related]  

  • 35. Low temperature studies of microsomal cytochrome P450. determination of dissociation constant of the [Fe2+-CO] form.
    Balny C; Debey P
    FEBS Lett; 1976 Feb; 62(2):198-201. PubMed ID: 1253986
    [No Abstract]   [Full Text] [Related]  

  • 36. Photodissociation of Fe2+-CO by continuous irradiation.
    Debey P; Douzou P
    FEBS Lett; 1974 Mar; 39(3):271-4. PubMed ID: 4853624
    [No Abstract]   [Full Text] [Related]  

  • 37. Metabolic activation of halothane and its covalent binding to liver endoplasmic proteins in vitro.
    Uehleke H; Hellmer KH; Tabarelli-Poplawski S
    Naunyn Schmiedebergs Arch Pharmacol; 1973; 279(1):39-52. PubMed ID: 4147966
    [No Abstract]   [Full Text] [Related]  

  • 38. Self-catalysed, O2-independent inactivation of NADPH- or dithionite-reduced microsomal cytochrome P-450 by carbon tetrachloride.
    de Groot H; Haas W
    Biochem Pharmacol; 1981 Aug; 30(16):2343-7. PubMed ID: 7295345
    [No Abstract]   [Full Text] [Related]  

  • 39. Ligand binding of organic sulfides to microsomal cytochrome P-450.
    Nastainzcyk W; Ruf HH; Ullrich V
    Eur J Biochem; 1975 Dec; 60(2):615-20. PubMed ID: 1204657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450.
    Ahr HJ; King LJ; Nastainczyk W; Ullrich V
    Biochem Pharmacol; 1980 Oct; 29(20):2855-61. PubMed ID: 7437085
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.