These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 4277372)
1. Bacterial transport. Boos W Annu Rev Biochem; 1974; 43(0):123-46. PubMed ID: 4277372 [No Abstract] [Full Text] [Related]
2. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli. Kobayashi H; Kin E; Anraku Y J Biochem; 1974 Aug; 76(2):251-61. PubMed ID: 4154322 [No Abstract] [Full Text] [Related]
3. Chemiosmotic interpretation of active transport in bacteria. Harold FM Ann N Y Acad Sci; 1974 Feb; 227():297-311. PubMed ID: 4275121 [No Abstract] [Full Text] [Related]
4. Transport of sugars and amino acids in bacteria. VII. Characterization of the reaction of restoration of active transport mediated by binding protein. Anraku Y; Kobayashi H; Amanuma H; Yamaguchi A J Biochem; 1973 Dec; 74(6):1249-61. PubMed ID: 4273604 [No Abstract] [Full Text] [Related]
6. Active transport of solutes in bacterial membrane vesicles. Konings WN Adv Microb Physiol; 1977; 15():175-251. PubMed ID: 143875 [No Abstract] [Full Text] [Related]
7. Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system. Cordaro C Annu Rev Genet; 1976; 10():341-59. PubMed ID: 189682 [No Abstract] [Full Text] [Related]
8. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases. Futai M Biochemistry; 1974 May; 13(11):2327-33. PubMed ID: 4598623 [No Abstract] [Full Text] [Related]
9. Membrane bound substrate recognition components of the dicarboxylate transport system in Escherichia coli. Lo TC; Sanwal BD Biochem Biophys Res Commun; 1975 Mar; 63(1):278-85. PubMed ID: 1092298 [No Abstract] [Full Text] [Related]
11. Proceedings: Bacterial active transport: characterization of transport carrier and mechanism of energy coupling. Anraku Y J Biochem; 1976 Apr; 79(4):47P-48P. PubMed ID: 776960 [No Abstract] [Full Text] [Related]
12. Restoration of active transport in an Mg2+-adenosine triphosphatase-deficient mutant of Escherichia coli. Rosen BP J Bacteriol; 1973 Dec; 116(3):1124-9. PubMed ID: 4270946 [TBL] [Abstract][Full Text] [Related]
13. The maintenance of the energized membrane state and its relation to active transport in Escherichia coli. Rosen BP; Adler LW Biochim Biophys Acta; 1975 Apr; 387(1):23-36. PubMed ID: 123782 [TBL] [Abstract][Full Text] [Related]
14. [Three classes of transport systems in bacteria]. Kepes A Biochimie; 1973; 55(6):693-702. PubMed ID: 4589242 [No Abstract] [Full Text] [Related]
16. [Biocatalysts responsible for carbohydrate transport in bacteria]. Gershanovich VN Usp Sovrem Biol; 1971; 72(1):24-46. PubMed ID: 4944705 [No Abstract] [Full Text] [Related]
17. Mechanisms of energy transformations. Racker E Annu Rev Biochem; 1977; 46():1006-14. PubMed ID: 20035 [No Abstract] [Full Text] [Related]
18. The hexose phosphate transport system of Escherichia coli. Dietz GW Adv Enzymol Relat Areas Mol Biol; 1976; 44():237-59. PubMed ID: 775939 [No Abstract] [Full Text] [Related]
19. Oxidative phosphorylation in bacteria: a genetic approach. Gutnick DL; Fragman D Horiz Biochem Biophys; 1977; 3():192-223. PubMed ID: 142062 [No Abstract] [Full Text] [Related]
20. Transport of sugars and amino acids in bacteria. XIV. Preferential inhibition of oxidase activities and active transport reactions for amino acids by azidebenzenes. Kin E; Anraku Y J Biochem; 1975 Jul; 78(1):159-63. PubMed ID: 127788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]