These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 4277565)
1. Lithium and rubidium interactions with sodium- and potassium-dependent adenosine triphosphatase: a molecular basis for the pharmacological actions of these ions. Tobin T; Akera T; Han CS; Brody TM Mol Pharmacol; 1974 May; 10(3):501-8. PubMed ID: 4277565 [No Abstract] [Full Text] [Related]
2. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. Post RL; Hegyvary C; Kume S J Biol Chem; 1972 Oct; 247(20):6530-40. PubMed ID: 4263199 [No Abstract] [Full Text] [Related]
3. Effect of rubidium, lithium and cesium on brain ATPase and protein kinases. Krulík R; Farská I; Prokes J Neuropsychobiology; 1977; 3(2-3):129-34. PubMed ID: 197447 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of adenosine triphosphate by way of potassium-sensitive phosphoenzyme of sodium, potassium adenosine triphosphatase. Post RL; Toda G; Kume S; Taniguchi K J Supramol Struct; 1975; 3(5-6):479-97. PubMed ID: 54512 [TBL] [Abstract][Full Text] [Related]
5. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. 8. Effects of ligands on fluorescence due to interaction of the enzyme with a fluorescent derivative of hellebrigenin. Yoda A; Hokin LE Mol Pharmacol; 1972 Jan; 8(1):30-40. PubMed ID: 4258647 [No Abstract] [Full Text] [Related]
6. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes. Whittam R; Ager ME Biochem J; 1964 Nov; 93(2):337-48. PubMed ID: 4220933 [No Abstract] [Full Text] [Related]
7. The role of Na+,K+-ATPase in the inotropic action of digitalis. Akera T; Brody TM Pharmacol Rev; 1977 Sep; 29(3):187-220. PubMed ID: 150607 [No Abstract] [Full Text] [Related]
8. Calcium ion and sodium- and potassium-dependent adenosine triphosphatase: its mechanism of inhibition and identification of the E 1 -P intermediate. Tobin T; Akera T; Baskin SI; Brody TM Mol Pharmacol; 1973 May; 9(3):336-49. PubMed ID: 4267957 [No Abstract] [Full Text] [Related]
9. Antibiotics as tools for metabolic studies. XVIII. Inhibition of sodium- and potassium-dependent adenosine triphosphatase. Susa JB; Lardy HA Mol Pharmacol; 1975 Mar; 11(2):166-73. PubMed ID: 123632 [No Abstract] [Full Text] [Related]
10. Mechanism of inhibition of sodium- and potassium-dependent adenosine triphosphatase by tricyclic antipsychotics. Palatini P Mol Pharmacol; 1977 Mar; 13(2):216-23. PubMed ID: 192990 [No Abstract] [Full Text] [Related]
11. Ouabain binding to sodium- and potassium-dependent adenosine triphosphatase: inhibition by the , -methylene analogue of adenosine triphosphate. Tobin T; Akera T; Hogg RE; Brody TM Mol Pharmacol; 1973 Mar; 9(2):278-81. PubMed ID: 4268124 [No Abstract] [Full Text] [Related]
12. Action of gramicidin on mitochondia. I. Ion-dependent mitochondrial volume changes energized by adenosine 5'-triphosphate. Falcone AB; Hadler HI Arch Biochem Biophys; 1968 Mar; 124(1):91-109. PubMed ID: 4232569 [No Abstract] [Full Text] [Related]
13. Reversibility of the interaction of strophanthidin bromoacetate with the cardiotonic steroid binding site of sodium- and potassium-dependent adenosine triphosphatase. Tobin T; Akera T; Ku D; Lu MC Mol Pharmacol; 1973 Sep; 9(5):676-85. PubMed ID: 4274674 [No Abstract] [Full Text] [Related]
14. Changes in cation transport and (Na + K)-activated adenosine triphosphatase produced by chronic administration of ethanol. Israel Y; Kalant H; LeBlanc E; Bernstein JC; Salazar I J Pharmacol Exp Ther; 1970 Aug; 174(2):330-6. PubMed ID: 4247519 [No Abstract] [Full Text] [Related]
15. Binding of adenosine triphosphate to sodium and potassium ion-stimulated adenosine triphosphatase. Hegyvary C; Post RL J Biol Chem; 1971 Sep; 246(17):5234-40. PubMed ID: 4255317 [No Abstract] [Full Text] [Related]
16. Evidence for two forms of fluoride-treated sodium- and potassium-dependent adenosine triphosphatase. Penzotti SC; Titus E Mol Pharmacol; 1972 Mar; 8(2):149-58. PubMed ID: 4260221 [No Abstract] [Full Text] [Related]
17. Inhibition of sodium- and potassium-dependent adenosine triphosphatase by ethacrynic acid: ligand-induced modifications. Banerjee SP; Khanna VK; Sen AK Biochem Pharmacol; 1971 Jul; 20(7):1649-60. PubMed ID: 4270365 [No Abstract] [Full Text] [Related]
18. The modification of the reconstituted sarcoplasmic ATPase by monovalent cations. The R; Hasselbach W Eur J Biochem; 1972 Oct; 30(2):318-24. PubMed ID: 4268263 [No Abstract] [Full Text] [Related]
19. Effects of rubidium on cardiac tissue: inhibition of Na+ ,K+-ATPase and stimulation of contractile force. Ku D; Akera T; Tobin T; Brody TM Res Commun Chem Pathol Pharmacol; 1974 Nov; 9(3):431-40. PubMed ID: 4280605 [No Abstract] [Full Text] [Related]
20. Sodium-potassium-activated adenosine triphosphatase (NaK-ATPase) activity in the rat lens. A histochemical and biochemical study. Palva M; Palkama A Acta Ophthalmol Suppl; 1974; 123():82-7. PubMed ID: 4369182 [No Abstract] [Full Text] [Related] [Next] [New Search]