These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. [Principle of parametric ion separation in a molecular model of the sodium pump]. Tverdislov VA; Iakovenko LV Biofizika; 1980; 25(5):815-20. PubMed ID: 6251924 [TBL] [Abstract][Full Text] [Related]
24. Membrane fluidity gradient model of cell transport. Doonan B Physiol Chem Phys; 1977; 9(2):189-201. PubMed ID: 601110 [TBL] [Abstract][Full Text] [Related]
25. Reconstitution of the Na+, K+-transport system in artificial membranes. Anner BM Acta Physiol Scand Suppl; 1980; 481():15-9. PubMed ID: 6254327 [TBL] [Abstract][Full Text] [Related]
26. [New method for the study of the cation center of the Na,K-ATPase system]. Kometiani ZP; Vekua MG Biokhimiia; 1983 Jun; 48(6):1025-30. PubMed ID: 6309255 [TBL] [Abstract][Full Text] [Related]
28. The rate limiting step in the uphill transport of Na+ and K+ ions at low temperature. Gruener N; Avi-Dor Y Isr J Med Sci; 1967; 3(1):143-8. PubMed ID: 4226537 [No Abstract] [Full Text] [Related]
29. [Cardiac glycoside binding site of (Na+ + K+)-ATPase following affinity labeling of the ATP-binding site with (sITP)2]. Patzelt-Wenczler R; Schoner W Verh Dtsch Ges Kreislaufforsch; 1975; 41():311-4. PubMed ID: 133556 [No Abstract] [Full Text] [Related]
30. [Biochemistry of active transport of Na+ and K+ ions]. Szmigielski S Postepy Biochem; 1971; 17(2):321-31. PubMed ID: 5125499 [No Abstract] [Full Text] [Related]
31. [Hypothetical phosphile-thiol molecular mechanism of Na+/K+- and Ca2+ pump functioning in biomembranes]. Lemeshko VV Dokl Akad Nauk SSSR; 1981; 259(1):232-4. PubMed ID: 6269816 [No Abstract] [Full Text] [Related]
32. Primary and secondary transport of cations in bacteria. Harold FM; Kakinuma Y Ann N Y Acad Sci; 1985; 456():375-83. PubMed ID: 2418733 [No Abstract] [Full Text] [Related]
33. [Molecular mechanism of active transport of cations]. Saito M Tanpakushitsu Kakusan Koso; 1971 Aug; 16(9):723-34. PubMed ID: 4255029 [No Abstract] [Full Text] [Related]
34. [Regulation of the number of k-binding sites of Na,K-ATPase by adenosine triphosphate]. Kikvidze ZIa; Vekua MG; Kometiani ZP Biokhimiia; 1983 Jul; 48(7):1074-9. PubMed ID: 6311290 [TBL] [Abstract][Full Text] [Related]
36. Model of active transport of ions in biomembranes based on ATP-dependent change of height of diffusion barriers to ions. Melkikh AV; Seleznev VD J Theor Biol; 2006 Oct; 242(3):617-26. PubMed ID: 16750835 [TBL] [Abstract][Full Text] [Related]
37. Requirements on models and models of active transport of ions in biomembranes. Melkikh AV; Seleznev VD Bull Math Biol; 2006 Feb; 68(2):385-99. PubMed ID: 16794936 [TBL] [Abstract][Full Text] [Related]
38. [Correlation of cardiac glycoside binding to their receptors and inhibition of (Na + K)-active ATPase. Clinical significance and application possibilities]. Erdmann E; Schoner W Verh Dtsch Ges Inn Med; 1974; 80():1075-7. PubMed ID: 4281574 [No Abstract] [Full Text] [Related]
39. Adenosine 3',5'-cyclophosphate and (Na plus-K+) activated adenosine triphosphatase. Dousa T Physiol Bohemoslov; 1970; 19(1):113-5. PubMed ID: 4320059 [No Abstract] [Full Text] [Related]
40. Study of the non-steady state electrogenic transport of sodium ions by Na+,K(+)-ATPase by the capacitance measurement method. Sokolov VS; Stukolov SM; Darmostuk AS; Apell HJ Membr Cell Biol; 1998; 11(5):653-78. PubMed ID: 9672883 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]