These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 4280304)

  • 21. Study on the regulatory role of fructose-1,6-diphosphate in the formation of AMP in rat skeletal muscle. A mechanism for synchronization of glycolysis and the purine nucleotide cycle.
    Ogawa H; Shiraki H; Nakagawa H
    Biochem Biophys Res Commun; 1976 Jan; 68(2):524-8. PubMed ID: 1252243
    [No Abstract]   [Full Text] [Related]  

  • 22. Altered AMP deaminase activity may extend postmortem glycolysis.
    England EM; Matarneh SK; Scheffler TL; Wachet C; Gerrard DE
    Meat Sci; 2015 Apr; 102():8-14. PubMed ID: 25498483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early post-mortem AMP-activated protein kinase (AMPK) activation leads to phosphofructokinase-2 and -1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle.
    Shen QW; Means WJ; Underwood KR; Thompson SA; Zhu MJ; McCormick RJ; Ford SP; Ellis M; Du M
    J Agric Food Chem; 2006 Jul; 54(15):5583-9. PubMed ID: 16848549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy metabolism and adenine nucleotide degradation in twitch-stimulated rat hindlimb during ischemia-reperfusion.
    Welsh DG; Lindinger MI
    Am J Physiol; 1993 Apr; 264(4 Pt 1):E655-61. PubMed ID: 8476043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perfusion of the psoas muscle of the rabbit. Metabolism of a homogeneous muscle composed of "fast glycolytic" fibres.
    Bauer HP; Reichmann H; Hofer HW
    Int J Biochem; 1986; 18(1):67-72. PubMed ID: 2935434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise.
    Spencer MK; Katz A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):E859-64. PubMed ID: 2058662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postmortem breakdown of ATP and glycogen in ground muscle: A review.
    Hamm R
    Meat Sci; 1977 Jan; 1(1):15-39. PubMed ID: 22054426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postmortem glycolysis in longissimus muscle of the hypophysectomized pig.
    Kraeling RR; Gerrits RJ
    J Anim Sci; 1973 Nov; 37(5):1124-31. PubMed ID: 4758017
    [No Abstract]   [Full Text] [Related]  

  • 29. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise.
    Park JH; Brown RL; Park CR; McCully K; Cohn M; Haselgrove J; Chance B
    Proc Natl Acad Sci U S A; 1987 Dec; 84(24):8976-80. PubMed ID: 3480522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state.
    Ortenblad N; Macdonald WA; Sahlin K
    Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study.
    Taylor DJ; Bore PJ; Styles P; Gadian DG; Radda GK
    Mol Biol Med; 1983 Jul; 1(1):77-94. PubMed ID: 6679873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organ-specific control of glycolysis in anoxic turtles.
    Kelly DA; Storey KB
    Am J Physiol; 1988 Nov; 255(5 Pt 2):R774-9. PubMed ID: 2973250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Curare and post-mortem changes in skeletal muscle of Piétrain pigs.
    McLoughlin JV
    Proc R Ir Acad B; 1974; 74(19):305-12. PubMed ID: 4445142
    [No Abstract]   [Full Text] [Related]  

  • 34. Comparison of actomyosin and myosin from rat muscles with marked differences in the ratio of fast oxidative glycolytic and fast glycolytic muscle fibres.
    Syrový I
    Physiol Bohemoslov; 1982; 31(2):137-42. PubMed ID: 6212953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycolytic regulation during an aerobic rest-to-work transition in dog gracilis muscle.
    Connett RJ
    J Appl Physiol (1985); 1987 Dec; 63(6):2366-74. PubMed ID: 2830218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of glycolysis in contracting skeletal muscle. II. Turning it off.
    Crowther GJ; Kemper WF; Carey MF; Conley KE
    Am J Physiol Endocrinol Metab; 2002 Jan; 282(1):E74-9. PubMed ID: 11739086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Postmortem glycolytic and nucleotide degradative changes in muscle of the atlantic queen crab (Chionoecetes opilio) upon iced storage of unfrozen and of thawed meat, and upon cooking.
    Hiltz DF; Bishop LJ
    Comp Biochem Physiol B; 1975 Dec; 52(4):453-8. PubMed ID: 1204328
    [No Abstract]   [Full Text] [Related]  

  • 38. Muscle ammonia metabolism during isometric contraction in humans.
    Katz A; Sahlin K; Henriksson J
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C834-40. PubMed ID: 2872818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of some electrical stimulation variables on wing flapping, post-mortem glycolysis and eating quality characteristics of broiler pectoralis major muscle.
    Gault NF; Burns C; Tolland EL; Kilpatrick DJ
    Br Poult Sci; 2000 Jul; 41(3):293-9. PubMed ID: 11081423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of ultrasound treatment on glycolytic enzymes when applied to crude extracts from early post-mortem bovine muscle.
    Ann Kent M; Maria Mullen A; O'Neill E; Álvarez C
    Ultrason Sonochem; 2024 Mar; 104():106842. PubMed ID: 38460472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.