These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 428057)

  • 1. Mechanism of augmented premature responses in canine ventricular muscle.
    Iinuma H; Kato K
    Circ Res; 1979 May; 44(5):624-9. PubMed ID: 428057
    [No Abstract]   [Full Text] [Related]  

  • 2. Supernormal responses to premature stimulation in Ca-dependent action potentials.
    Iinuma H; Kato K
    Experientia; 1979 Jul; 35(7):885-6. PubMed ID: 477841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of verapamil on the noraml action potential and on a calcium-dependent slow response of canine cardiac Purkinje fibers.
    Cranefield PF; Aronson RS; Wit AL
    Circ Res; 1974 Feb; 34(2):204-13. PubMed ID: 4811074
    [No Abstract]   [Full Text] [Related]  

  • 4. Difference between the inhibitory actions of prostaglandin E1 and verapamil in canine small intestine.
    Nakahata N; Nakanishi H; Suzuki T
    Eur J Pharmacol; 1980 May; 63(4):335-40. PubMed ID: 7389817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible mechanism of rate-dependent change of contraction in dog ventricular muscle: relation to calcium movements.
    Saeki Y; Kamiyama A
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():131-5. PubMed ID: 1031922
    [No Abstract]   [Full Text] [Related]  

  • 6. A comparative study of the blockade of calcium-dependent action potentials by verapamil, nifedipine and nimodipine in ventricular muscle.
    Hachisu M; Pappano AJ
    J Pharmacol Exp Ther; 1983 Apr; 225(1):112-20. PubMed ID: 6834265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of verapamil on canine Purkinje fibres and ventricular muscle fibres with particular reference to the alternation of action potential duration after a sudden increase in driving rate.
    Hirata Y; Kodama I; Iwamura N; Shimizu T; Toyama J; Yamada K
    Cardiovasc Res; 1979 Jan; 13(1):1-8. PubMed ID: 445526
    [No Abstract]   [Full Text] [Related]  

  • 8. The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents.
    Spach MS; Miller WT; Geselowitz DB; Barr RC; Kootsey JM; Johnson EA
    Circ Res; 1981 Jan; 48(1):39-54. PubMed ID: 7438345
    [No Abstract]   [Full Text] [Related]  

  • 9. The effects of extracellular potassium and several drugs on the premature action potential and postextrasystolic potentiation.
    Linuma H; Kato K
    Eur J Cardiol; 1978 Jul; 7(5-6):465-77. PubMed ID: 81131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of external calcium, calcium channel-blocking agents, and stimulation frequency on cycle length-dependent changes in canine cardiac action potential duration.
    Colatsky TJ; Hogan PM
    Circ Res; 1980 Apr; 46(4):543-52. PubMed ID: 7357702
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of verapamil on electrophysiologic properties of canine cardiac Purkinje fibers.
    Rosen MR; Ilvento JP; Gelband H; Merker C
    J Pharmacol Exp Ther; 1974 May; 189(2):414-22. PubMed ID: 4829223
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of verapamil on rapid Na channel-dependent action potentials of K+-depolarized ventricular fibers.
    Chen CM; Gettes LS
    J Pharmacol Exp Ther; 1979 Jun; 209(3):415-21. PubMed ID: 439018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of verapamil on the gastrocnemius and soleus muscles of the cat in vivo.
    Skirboll LR; Howard RA; Dretchen KL
    Eur J Pharmacol; 1979 Nov; 60(1):15-21. PubMed ID: 520414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The effect of increased extracellular calcium concentration on the hypoxic and pharmacologic hyperemia of skeletal muscle].
    Meyer VU; Marten W; Schiffer W; Raff WK
    Arzneimittelforschung; 1975 May; 25(5):749-53. PubMed ID: 1242316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use-dependent block of sodium channels by verapamil in skeletal muscle during repetitive stimulation.
    Frank GB; Oz M
    Proc West Pharmacol Soc; 1991; 34():409-12. PubMed ID: 1664961
    [No Abstract]   [Full Text] [Related]  

  • 16. [Properties of the premature extrasystolic action potentials in the rabbit atrial myocardium].
    Nilius B; Schüttler K; Boldt W
    Acta Biol Med Ger; 1981; 40(3):275-86. PubMed ID: 7304043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action of tetrodotoxin and verapamil on cardiac Purkinje fiber action potentials in a sodium-free, calcium-rich medium.
    Posner P; Kelleher DL
    Pharmacology; 1983; 27(4):185-91. PubMed ID: 6314396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of quinidine and verapamil on electrically induced automaticity in the ventricular myocardium of guinea pig.
    Grant AO; Katzung BG
    J Pharmacol Exp Ther; 1976 Feb; 196(2):407-19. PubMed ID: 1255485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co2+, low Ca2+, and verapamil reduce mechanical activity in rat skeletal muscles.
    Kotsias BA; Muchnik S; Obejero Paz CA
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C40-6. PubMed ID: 3942207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion of monophasic action potential durations and activation times during atrial pacing, ventricular pacing, and ventricular premature stimulation in canine ventricles.
    Kuo CS; Amlie JP; Munakata K; Reddy CP; Surawicz B
    Cardiovasc Res; 1983 Mar; 17(3):152-61. PubMed ID: 6871905
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.