These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 4282334)

  • 1. [The activities of phospholipase A and proteases from the venoms of Bothrops and Crotalus. Their action on the mitochondral respiratory chain].
    Badano BN; Stoppani AO
    C R Seances Soc Biol Fil; 1974; 168(8-9):1149. PubMed ID: 4282334
    [No Abstract]   [Full Text] [Related]  

  • 2. Neuromuscular action of venom from the South American colubrid snake Philodryas patagoniensis.
    Carreiro da Costa RS; Prudêncio L; Ferrari EF; Souza GH; de Mello SM; Prianti Júnior AC; Ribeiro W; Zamunér SR; Hyslop S; Cogo JC
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jul; 148(1):31-8. PubMed ID: 18455482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of electron transport chain by purified phospholipase A from Bothrops neuwiedi venom.
    Vidal JC; Badano BN; Stoppani AO; Boveris A
    Mem Inst Butantan; 1966; 33(3):913-20. PubMed ID: 6002973
    [No Abstract]   [Full Text] [Related]  

  • 4. Convulsant activity of Naja Naja venom and its phospholipase A component.
    Lysz TW; Rosenberg P
    Toxicon; 1974 May; 12(3):253-65. PubMed ID: 4458108
    [No Abstract]   [Full Text] [Related]  

  • 5. [Protective effect of respiratory chain substrates on inactivation of mitochondrial electron transfer particles by proteolytic enzymes and cobra venom].
    Luzikov VN; Saks VA; Berezin IV
    Biokhimiia; 1969; 34(4):874-7. PubMed ID: 4311606
    [No Abstract]   [Full Text] [Related]  

  • 6. [Mechanism of inactivation of the respiratory chain by cobra venom phospholipase].
    Romashina LV; Voznaia MN; Grosse R; Rakhimov MM; Luzikov VN
    Biokhimiia; 1972; 37(6):1204-9. PubMed ID: 4345367
    [No Abstract]   [Full Text] [Related]  

  • 7. Anticoagulant and antifibrinogenolytic properties of the aqueous extract from Bauhinia forficata against snake venoms.
    Oliveira CZ; Maiorano VA; Marcussi S; Sant'ana CD; Januário AH; Lourenço MV; Sampaio SV; França SC; Pereira PS; Soares AM
    J Ethnopharmacol; 2005 Apr; 98(1-2):213-6. PubMed ID: 15763387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipase A and B activities of reptile and hymenoptera venoms.
    Fletcher JE; Elliott WB; Ishay J; Rosenberg P
    Toxicon; 1979; 17(6):591-9. PubMed ID: 42991
    [No Abstract]   [Full Text] [Related]  

  • 9. Phospholipase A2 electrophoretic variants in reptile venoms.
    Durkin JP; Pickwell GV; Trotter JT; Shier WT
    Toxicon; 1981; 19(4):535-46. PubMed ID: 7330890
    [No Abstract]   [Full Text] [Related]  

  • 10. Enzymatic activities and other characteristics of Crotalus durissus cumanensis venom.
    Grillo Rodriguez O; Scannone HR; Parra ND
    Toxicon; 1974 May; 12(3):297-302. PubMed ID: 4376285
    [No Abstract]   [Full Text] [Related]  

  • 11. [Phospholipases A2 from snake and bee venoms].
    Nishida S; Tamiya N
    Tanpakushitsu Kakusan Koso; 1986 Feb; 31(2):158-65. PubMed ID: 3523621
    [No Abstract]   [Full Text] [Related]  

  • 12. [Toxicity of venoms from snakes of medical importance in México].
    de Roodt AR; Estévez-Ramírez J; Paniagua-Solís JF; Litwin S; Carvajal-Saucedo A; Dolab JA; Robles-Ortiz LE; Alagón A
    Gac Med Mex; 2005; 141(1):13-21. PubMed ID: 15754746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of the enzymatic systems of the inner mitochondrial membrane and related problems. A possible approach to the problem of the regulation of mitochondrial formation.
    Luzikov VN
    Subcell Biochem; 1973 Jan; 2(1):1-31. PubMed ID: 4587563
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparison of phospholipase activity with direct and indirect lytic effects of animal venoms upon human red cells.
    Sosa BP; Alagón AC; Possani LD; Juliá JZ
    Comp Biochem Physiol B; 1979; 64(2):231-4. PubMed ID: 318305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of snake venom polypeptides on the cholinoreceptive membranes of marine invertebrates].
    Magazanik LG; Lukomskaia NIa; Fedorov VV; Potap'eva NN; Snetkov VA
    Zh Evol Biokhim Fiziol; 1974; 10(4):411-2. PubMed ID: 4463625
    [No Abstract]   [Full Text] [Related]  

  • 16. Isolation of characterization fo the Egyptian cobra (Naje Haje) venom.
    Mohmed AH; Ramadan MA; Khalifa A; El-Karimy MA; Darwish MA
    Indian J Med Res; 1976 Sep; 64(9):1358-64. PubMed ID: 1010629
    [No Abstract]   [Full Text] [Related]  

  • 17. Temperature stability of phospholipase A activity. II. Variations in optimum temperature of phospholipases A2 from various snake venoms.
    Nair BC; Nair C; Elliott WB
    Toxicon; 1976; 14(1):43-7. PubMed ID: 1258067
    [No Abstract]   [Full Text] [Related]  

  • 18. [Comparative enzyme studies on snake venoms, with special reference to their casein-splitting proteases].
    Mebs D
    Hoppe Seylers Z Physiol Chem; 1968 Sep; 349(9):1115-25. PubMed ID: 4303213
    [No Abstract]   [Full Text] [Related]  

  • 19. Variability in expression of Bothrops insularis snake venom proteases: an ontogenetic approach.
    Zelanis A; de Souza Ventura J; Chudzinski-Tavassi AM; de Fátima Domingues Furtado M
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 May; 145(4):601-9. PubMed ID: 17398162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haemostatic changes caused by the venoms of South American snakes.
    Kamiguti AS; Cardoso JL
    Toxicon; 1989; 27(9):955-63. PubMed ID: 2678605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.