These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 4283378)

  • 1. [Topography of the nitrogenase ATPase centre studied by fluorescence labeling].
    Alfimova EIa; Syrtsova LA; Pisarskaia TN; Likhtenshteĭn GI
    Mol Biol; 1974; 8(5):676-85. PubMed ID: 4283378
    [No Abstract]   [Full Text] [Related]  

  • 2. [Estimation of the distance between ATPase and substrate-binding sites in nitrogenase by an NMR method].
    Syrtsova LA; Likhtenshteĭn GI; Pisarskaia TN; Berdinskiĭ VL; Lezina VP; Stepaniants AU
    Mol Biol; 1974; 8(6):824-31. PubMed ID: 4283380
    [No Abstract]   [Full Text] [Related]  

  • 3. Structure and mechanism of catalytic action of active sites of nitrogenase.
    Likhtenshtein GI; Gvozdev RI; Levchenko LA; Syrtsova LA
    Biol Bull Acad Sci USSR; 1978; 5(2):125-42. PubMed ID: 154348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Role of Fe-Mo-cofactor in the formation of the catalytically active ATPase center of nitrogenase].
    Mitsova IZ; Kondrat'eva TA; Gvozdev RI
    Dokl Akad Nauk SSSR; 1980; 251(2):494-7. PubMed ID: 6444870
    [No Abstract]   [Full Text] [Related]  

  • 5. [Study of the topography of the nitrogenase active center by the electron microscopy method with the use of the electron density labels].
    Levchenko LA; Raevskiĭ AV; Likhtenshteĭn GI; Sadkov AP; Pivovarova TS
    Biokhimiia; 1977 Oct; 42(10):1755-64. PubMed ID: 922065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Role of adenosine triphosphatase on nitrogenase function].
    Likhtenshtein GI; Panteleeva NS; Skvortsevich EG; Syrtsova LA; Uzenskaia AM
    Mol Biol (Mosk); 1980; 14(1):147-56. PubMed ID: 6453279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Localization of the ATPase site of nitrogenase by isotopic oxygen exchange [180]-Pi in equilibrium with H20].
    Tertyshnaia NI; Skvortsevich EG; Syrtsova LA; Uzenskaia AM; Panteleeva NS
    Biokhimiia; 1982 Oct; 47(10):1741-6. PubMed ID: 6216920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains.
    Liu R; Sharom FJ
    Biochemistry; 1996 Sep; 35(36):11865-73. PubMed ID: 8794769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogenase.
    Winter HC; Burris RH
    Annu Rev Biochem; 1976; 45():409-26. PubMed ID: 183600
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excimer formation in pyrenemaleimide-labeled sarcoplasmic reticulum ATPase.
    Lüdi H; Hasselbach W
    Biophys J; 1987 Mar; 51(3):513-5. PubMed ID: 2952178
    [No Abstract]   [Full Text] [Related]  

  • 13. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides.
    Ryle MJ; Seefeldt LC
    Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence investigation of the Clostridium pasteurianum nitrogenase: the partial amino acid sequence of azoferredoxin.
    Tanaka M; Haniu M; Yasunobu KT; Mortenson LE
    Adv Exp Med Biol; 1976; 74():83-90. PubMed ID: 961542
    [No Abstract]   [Full Text] [Related]  

  • 15. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-transfer chemistry of the iron-molybdenum cofactor of nitrogenase: delocalized and localized reduced states of FeMoco which allow binding of carbon monoxide to iron and molybdenum.
    Pickett CJ; Vincent KA; Ibrahim SK; Gormal CA; Smith BE; Best SP
    Chemistry; 2003 Jan; 9(1):76-87. PubMed ID: 12506366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for subclasses of SH groups in (Na++K+)-ATPase.
    Takeguchi CA; Honegger UE; Holland WW; Titus EO
    Life Sci; 1976 Sep; 19(6):797-805. PubMed ID: 135197
    [No Abstract]   [Full Text] [Related]  

  • 18. An investigation of the conformational mobility of the active center of D-glyceraldehyde 3-phosphate dehydrogenase.
    Markovich DS; Krapivinskii GB; Neznaiko NF
    Mol Biol; 1974 Nov; 8(3):382-91. PubMed ID: 4474588
    [No Abstract]   [Full Text] [Related]  

  • 19. [Spectrofluorometric topography of the ATPase center of Ca2+-Mg2+-dependent ATPase of sarcoplasmic reticulum by means of platinum and palladium compounds].
    Tat'ianenko LV; Kotel'nikova RA; Moshkovskiĭ IuSh; Zakharova IA; Bankovskiĭ IuA
    Mol Biol (Mosk); 1981; 15(2):424-9. PubMed ID: 6113541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An atomic level model for the interactions of molybdenum nitrogenase with carbon monoxide, acetylene, and ethylene.
    Durrant MC
    Biochemistry; 2004 May; 43(20):6030-42. PubMed ID: 15147187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.