These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 428392)

  • 1. Bee venom neurotoxin (apamin): iodine labeling and characterization of binding sites.
    Habermann E; Fischer K
    Eur J Biochem; 1979 Mar; 94(2):355-64. PubMed ID: 428392
    [No Abstract]   [Full Text] [Related]  

  • 2. Leiurotoxin I (scyllatoxin), a peptide ligand for Ca2(+)-activated K+ channels. Chemical synthesis, radiolabeling, and receptor characterization.
    Auguste P; Hugues M; Gravé B; Gesquière JC; Maes P; Tartar A; Romey G; Schweitz H; Lazdunski M
    J Biol Chem; 1990 Mar; 265(8):4753-9. PubMed ID: 2307683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of a pure monoiodo derivative of the bee venom neurotoxin apamin and its binding properties to rat brain synaptosomes.
    Hugues M; Duval D; Kitabgi P; Lazdunski M; Vincent JP
    J Biol Chem; 1982 Mar; 257(6):2762-9. PubMed ID: 6277913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer assisted quantitative densitometric analysis of 125I-apamin binding sites in the central nervous system.
    Janicki PK; Seibold G; Siembab D; Paulo EA; Szreniawski Z
    Acta Physiol Pol; 1989; 40(2):240-9. PubMed ID: 2641421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apamin, a centrally acting neurotoxic peptide: binding and actions.
    Habermann E; Fischer K
    Adv Cytopharmacol; 1979; 3():387-94. PubMed ID: 38653
    [No Abstract]   [Full Text] [Related]  

  • 6. Specific binding and pharmacological interactions of apamin, the neurotoxin from bee venom, with guinea pig colon.
    Hugues M; Duval D; Schmid H; Kitabgi P; Lazdunski M; Vincent JP
    Life Sci; 1982 Aug; 31(5):437-43. PubMed ID: 7132561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Existence of a Ca2+-dependent K+ channel in synaptic membrane and postsynaptic density fractions isolated from canine cerebral cortex and cerebellum, as determined by apamin binding.
    Wu K; Carlin R; Sachs L; Siekevitz P
    Brain Res; 1985 Dec; 360(1-2):183-94. PubMed ID: 2416402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxins in the characterization of potassium channels.
    Castle NA; Haylett DG; Jenkinson DH
    Trends Neurosci; 1989 Feb; 12(2):59-65. PubMed ID: 2469212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative autoradiographic mapping in rat brain of the receptor of apamin, a polypeptide toxin specific for one class of Ca2+-dependent K+ channels.
    Mourre C; Hugues M; Lazdunski M
    Brain Res; 1986 Sep; 382(2):239-49. PubMed ID: 2428440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High affinity binding of [125I]monoiodoapamin to isolated guinea-pig hepatocytes.
    Cook NS; Haylett DG; Strong PN
    FEBS Lett; 1983 Feb; 152(2):265-9. PubMed ID: 6298001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photolabile derivatives of 125I-apamin: defining the structural criteria required for labeling high and low molecular mass polypeptides associated with small conductance Ca(2+)-activated K+ channels.
    Wadsworth JD; Doorty KB; Ganellin CR; Strong PN
    Biochemistry; 1996 Jun; 35(24):7917-27. PubMed ID: 8672494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The apamin-sensitive Ca2+-dependent K+ channel molecular properties, differentiation and endogenous ligands in mammalian brain.
    Lazdunski M; Fosset M; Hughes M; Mourre C; Romey G; Schmid-Antomarchi H
    Biochem Soc Symp; 1985; 50():31-42. PubMed ID: 2428371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative autoradiography of [125I] apamin binding sites in the central nervous system.
    Janicki PK; Horvath E; Seibold G; Habermann E
    Biomed Biochim Acta; 1984; 43(12):1371-5. PubMed ID: 6335967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific binding properties of 125I-apamin in various structures of the rat central nervous system.
    Janicki PK
    Acta Physiol Pol; 1989; 40(2):235-9. PubMed ID: 2641420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor-mediated endocytosis of apamin by liver cells.
    Strong PN; Evans WH
    Eur J Biochem; 1987 Mar; 163(2):267-73. PubMed ID: 3028799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guanosine 3',5'-monophosphate receptor protein: separation from adenosine 3',5'-monophosphate receptor protein.
    Gill GN; Kanstein CB
    Biochem Biophys Res Commun; 1975 Apr; 63(4):1113-22. PubMed ID: 165815
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of angiotensin II receptor subtypes.
    Chiu AT; Herblin WF; McCall DE; Ardecky RJ; Carini DJ; Duncia JV; Pease LJ; Wong PC; Wexler RR; Johnson AL
    Biochem Biophys Res Commun; 1989 Nov; 165(1):196-203. PubMed ID: 2590220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoradiographic localization of apamin-sensitive Ca2+-dependent K+ channels in rat brain.
    Mourre C; Schmid-Antomarchi H; Hugues M; Lazdunski M
    Eur J Pharmacol; 1984 Apr; 100(1):135-6. PubMed ID: 6327325
    [No Abstract]   [Full Text] [Related]  

  • 19. [Ultrastructural localization of apamine binding sites in the smooth muscle of the guinea pig intestine].
    Vasilenko SV; Komissarenko SV; Prochukhan NV; Gerasimova TB; Zak KP
    Neirofiziologiia; 1985; 17(6):824-7. PubMed ID: 3911079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a plasma membrane calcium pump in bovine adrenal medulla but not adrenal cortex.
    Leslie SW; Borowitz JL
    Biochim Biophys Acta; 1975 Jun; 394(2):227-38. PubMed ID: 124598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.