These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 4284088)
1. Continuous recording of intracellular reduced pyridine nucleotide changes in skeletal muscle in vivo. Chance B Tex Rep Biol Med; 1964 Dec; 22():Suppl 1:836-41. PubMed ID: 4284088 [No Abstract] [Full Text] [Related]
2. Oxidative and glycolytic recovery metabolism in muscle. Jöbsis FF; Duffield JC J Gen Physiol; 1967 Mar; 50(4):1009-47. PubMed ID: 4291915 [TBL] [Abstract][Full Text] [Related]
3. [On problems of biochemical changes during muscle activity]. Binnewies SM Z Gesamte Hyg; 1968 Sep; 14(9):657-69. PubMed ID: 4308991 [No Abstract] [Full Text] [Related]
4. Exchange of actin-bound nucleotide in brief electrical stimulation of muscle. Cheesman DF; Priston A Biochem Biophys Res Commun; 1972 Aug; 48(3):552-8. PubMed ID: 4537997 [No Abstract] [Full Text] [Related]
5. The identification and control of metabolic states. Chance B Behav Sci; 1970 Jan; 15(1):1-23. PubMed ID: 4391763 [No Abstract] [Full Text] [Related]
6. Oxidation of pyridine nucleotides and depletion of ATP and ADP during calcium- and inorganic phosphate-induced mitochondrial permeability transition. Savage MK; Reed DJ Biochem Biophys Res Commun; 1994 May; 200(3):1615-20. PubMed ID: 8185617 [TBL] [Abstract][Full Text] [Related]
7. [Reversed electron transfer and parallel changes in the SH-group content of mitochondria after addition of cysteine]. Vinogradov AD; Nikolaeva LV; Ozrina RD; Kondrashova MN Biokhimiia; 1966; 31(3):501-6. PubMed ID: 4299362 [No Abstract] [Full Text] [Related]
8. [Adenine nucleotides, NAD + and NADH in skeletal muscles during intensive work and in rest periods]. Chagovets NR Dokl Akad Nauk SSSR; 1972 Nov; 207(3):739-41. PubMed ID: 4345232 [No Abstract] [Full Text] [Related]
9. [Correlation between heat production of a muscle tetanized at 20 degrees and phosphorylcreatine and nucleotide consumption]. Canfield P; Lebacq J; Maréchal G J Physiol (Paris); 1971; 63(6):181A. PubMed ID: 5152214 [No Abstract] [Full Text] [Related]
10. [Control exercized by adrenalin on turnover time of ATP and ADP at the level of glycolysis and oxidative phosphorylations in muscle]. Morelis R; Gautheron D Bull Soc Chim Biol (Paris); 1968; 50(12):2503-20. PubMed ID: 4306333 [No Abstract] [Full Text] [Related]
11. Role of calcium in respiratory control. Hansford RG Med Sci Sports Exerc; 1994 Jan; 26(1):44-51. PubMed ID: 8133737 [TBL] [Abstract][Full Text] [Related]
12. A study on the interdependence of contractile tone and metabolite levels in vivo in rat skeletal muscle. Kirsten E; Kirsten R; Arese P; Kraus H; Snigula E Biochem Z; 1966 Apr; 344(3):233-7. PubMed ID: 5985648 [No Abstract] [Full Text] [Related]
13. [Distribution of intracellular ADP, ATP and orthophosphate in the resting and tetanically stimulated frog musculature by means of a fractionated extraction]. Janke J Pflugers Arch Gesamte Physiol Menschen Tiere; 1968; 300(1):1-22. PubMed ID: 4298562 [No Abstract] [Full Text] [Related]
14. Metabolic control in mitochondria by adenine nucleotide translocation. Klingenberg M; Pfaff E Biochem Soc Symp; 1968; 27():105-22. PubMed ID: 5759704 [No Abstract] [Full Text] [Related]
15. [The mitochondria of poikilothermic vertebrates: oxidative phosphorylation and adenine nucleotides]. Savina MV; Ivanova TI; Egoiants MA Zh Evol Biokhim Fiziol; 1993; 29(2):113-9. PubMed ID: 8317178 [TBL] [Abstract][Full Text] [Related]
16. [Desamination of adenylic acid in subcellular elements of skeletal muscles in physical effort]. Goloborod'ko OP Ukr Biokhim Zh; 1970; 42(3):335-40. PubMed ID: 5492092 [No Abstract] [Full Text] [Related]
17. [Luminescent spectral study of the routes of terminal oxidation during changes in the functional activity of a single muscle cell]. Karnaukhov VN; Zinchenko VP Tsitologiia; 1971 Oct; 13(10):1243-9. PubMed ID: 5316245 [No Abstract] [Full Text] [Related]
18. Oxidative phosphorylation at various stages of genetically determined cardiomyopathy in the Syrian hamster. Wrogemann K; Blanchaer MC; Jacobson BE Recent Adv Stud Cardiac Struct Metab; 1973; 3():467-78. PubMed ID: 4377606 [No Abstract] [Full Text] [Related]
19. [Changes in the turnover rate of phosphorylated fractions and free nucleotides in muscle under the influence of adrenaline]. Gautheron D; Morelis R Bull Soc Chim Biol (Paris); 1965; 47(11):1923-40. PubMed ID: 4286814 [No Abstract] [Full Text] [Related]
20. Biochemical studies of transitions from rest to activity. Chance B Res Publ Assoc Res Nerv Ment Dis; 1967; 45():48-63. PubMed ID: 4295649 [No Abstract] [Full Text] [Related] [Next] [New Search]