These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 4284828)

  • 1. Biological mechanisms involved in the formation of deoxysugars. I. Preparation of thymidine diphosphate glucose labeled specifically in carbon 3.
    Gabriel O; Ashwell G
    J Biol Chem; 1965 Nov; 240(11):4123-7. PubMed ID: 4284828
    [No Abstract]   [Full Text] [Related]  

  • 2. Biological mechanisms involved in the formation of deoxysugars. II. Enzymatic conversion of thymidine diphosphoglucose-3T to thymidine diphospho-4-keto-6-deoxyglucose.
    Gabriel O; Ashwell G
    J Biol Chem; 1965 Nov; 240(11):4128-32. PubMed ID: 4954469
    [No Abstract]   [Full Text] [Related]  

  • 3. Biological mechanisms involved in the formation of deoxysugars. 3. Enzymatic conversion of thymidine diphosphoglucose-3T to thymidine diphospho-L-rhamnose.
    Gabriel O
    J Biol Chem; 1966 Feb; 241(4):924-9. PubMed ID: 4285848
    [No Abstract]   [Full Text] [Related]  

  • 4. Biological mechanisms involved in the formation of deoxysugars. VI. Role and function of enzyme-bound nicotinamide adenine dinucleotide in thymidine diphosphate D-glucose oxidoreductase.
    Wang SF; Gabriel O
    J Biol Chem; 1970 Jan; 245(1):8-14. PubMed ID: 4312478
    [No Abstract]   [Full Text] [Related]  

  • 5. Biological mechanisms involved in the formation of deoxy sugars. IV. Enzymatic conversion of thymidine diphosphoglucose-4T to thymidine diphospho-4-keto-6-deoxyglucose-6T.
    Gabriel O; Lindquist LC
    J Biol Chem; 1968 Apr; 243(7):1479-84. PubMed ID: 4869561
    [No Abstract]   [Full Text] [Related]  

  • 6. The mechanism of 6-deoxyhexose synthesis. II. Conversion of deoxythymidine diphosphate 4-keto-6-deoxy-D-glucose to deoxythymidine diphosphate L-rhamnose.
    Melo A; Glaser L
    J Biol Chem; 1968 Apr; 243(7):1475-8. PubMed ID: 4384782
    [No Abstract]   [Full Text] [Related]  

  • 7. Reaction of enolic sugar derivatives. 5. Studies on the conversion of thymidine diphosphate D-glucose to thymidine diphosphate 4-keto-6-deoxy-D-glucose using thymidine diphosphate D-[U-14C, 5-3H]glucose.
    Herrmann K; Lehmann J
    Eur J Biochem; 1968 Jan; 3(3):368-76. PubMed ID: 4868884
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of diazoacetyl-glycine amide on purine nucleotide and deoxyribonucleic acid synthesis in Ehrlich ascites tumor cells.
    Giraldi T; Steppani G; Baldini L
    Biochem Pharmacol; 1972 Nov; 21(22):3035-9. PubMed ID: 4649352
    [No Abstract]   [Full Text] [Related]  

  • 9. THE NUCLEOTIDE SPECIFICITY AND FEEDBACK CONTROL OF THYMIDINE DIPHOSPHATE D-GLUCOSE PYROPHOSPHORYLASE.
    MELO A; GLASER L
    J Biol Chem; 1965 Jan; 240():398-405. PubMed ID: 14253442
    [No Abstract]   [Full Text] [Related]  

  • 10. Incorporation of N-formylmethionine into peptides by Pseudomonas aeruginosa extracts.
    Migita LK; Doi RH
    Biochim Biophys Acta; 1970 Jan; 199(1):248-55. PubMed ID: 4983994
    [No Abstract]   [Full Text] [Related]  

  • 11. Nature of transient inhibition of deoxyribonucleic acid synthesis in HeLa cells by parainfluenza virus 1 (Sendai).
    Fuchs P; Kohn A
    J Virol; 1971 Nov; 8(5):695-700. PubMed ID: 4332139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secretion of RNA by normal and transformed cells.
    Kolodny GM; Culp LA; Rosenthal LJ
    Exp Cell Res; 1972 Jul; 73(1):65-72. PubMed ID: 4338683
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the biosynthesis of alpha-putrescinylthymine in bacteriophage phi W-14-infected Pseudomonas acidovorans.
    Kelln RA; Warren RA
    J Virol; 1973 Dec; 12(6):1427-33. PubMed ID: 4586777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compositional variations in the common pentanucleotide from transfer ribonucleic acids of Escherichia coli.
    Chirikdjian JG; Davis FF
    J Biol Chem; 1970 Mar; 245(6):1296-301. PubMed ID: 4315597
    [No Abstract]   [Full Text] [Related]  

  • 15. INHIBITION OF DNA SYNTHESIS IN MAMMALIAN CELLS BY ACTIDIONE.
    BENNETT LL; SMITHERS D; WARD CT
    Biochim Biophys Acta; 1964 May; 87():60-9. PubMed ID: 14167434
    [No Abstract]   [Full Text] [Related]  

  • 16. IN VITRO STUDIES ON GRANULOCYTOPOIESIS UTILIZING S35 SULPHATE, C14 FORMATE, AND H3 THYMIDINE.
    RYTOEMAA T; TEIR H
    Sangre (Barc); 1964; 17():359-61. PubMed ID: 14252446
    [No Abstract]   [Full Text] [Related]  

  • 17. Biosynthesis of pteridines and of phenylalanine hydroxylase cofactor in cell-free extracts of Pseudomonas species (ATCC 11299a).
    Guroff G; Strenkoski CA
    J Biol Chem; 1966 May; 241(10):2220-7. PubMed ID: 5911609
    [No Abstract]   [Full Text] [Related]  

  • 18. A novel technique for the preparation of transport-active membrane vesicles from Pseudomonas aeruginosa: observations on gluconate transport.
    Stinnett JD; Guymon LF; Eagon RG
    Biochem Biophys Res Commun; 1973 May; 52(1):285-90. PubMed ID: 4197191
    [No Abstract]   [Full Text] [Related]  

  • 19. Reaction of formaldehyde with nucleotides and ribonucleic acid.
    Feldman MY
    Biochim Biophys Acta; 1967 Nov; 149(1):20-34. PubMed ID: 5625708
    [No Abstract]   [Full Text] [Related]  

  • 20. Structure of a rhamnolipid from Pseudomonas aeruginosa.
    Edwards JR; Hayashi JA
    Arch Biochem Biophys; 1965 Aug; 111(2):415-21. PubMed ID: 4285853
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.