BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4285331)

  • 1. Use of tetrazolium salts for electron transport studies in meningopneumonitis. I. Reduced nicotinamide adenine dinucleotide system.
    Allen EG
    J Bacteriol; 1965 Dec; 90(6):1505-12. PubMed ID: 4285331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of tetrazolium salts for electron transport studies in meningopneumonitis. II. Reduced nicotinamide adenine dinucleotide phosphate system.
    Allen EG
    J Bacteriol; 1966 Oct; 92(4):1041-6. PubMed ID: 4380866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ; SMITH PF
    J Bacteriol; 1964 Jul; 88(1):122-9. PubMed ID: 14197876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of selected inhibitors on electron transport in Neisseria gonorrhoeae.
    Kenimer EA; Lapp DF
    J Bacteriol; 1978 May; 134(2):537-45. PubMed ID: 207670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nicotinamide adenine dinucleotide -- independent formate dehydrogenase in Mycobacterium phlei.
    Deyhle RR; Barton LL
    Can J Microbiol; 1977 Feb; 23(2):125-30. PubMed ID: 13920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parasitological review. Electron transport systems and mitochondrial DNA in Trypanosomatidae: a review.
    Hill GC; Anderson WA
    Exp Parasitol; 1970 Oct; 28(2):356-80. PubMed ID: 4323391
    [No Abstract]   [Full Text] [Related]  

  • 7. Tetrazolium reductase activity of the enzymatic systems of oxidation of reduced nicotinamide nucleotides in mammalian brain.
    Vesco C; Giuditta A
    Biochim Biophys Acta; 1966 Feb; 113(2):197-215. PubMed ID: 4380273
    [No Abstract]   [Full Text] [Related]  

  • 8. Respiratory mechanisms in the Flexibacteriaceae: terminal oxidase systems of Saprospira grandis and Vitreoscilla species.
    Dietrich WE; Biggins J
    J Bacteriol; 1971 Mar; 105(3):1083-9. PubMed ID: 4323292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of reducing power in chemosynthesis. 3. Energy-linked reduction of pyridine nucleotides in Thiobacillus novellus.
    Aleem MI
    J Bacteriol; 1966 Feb; 91(2):729-36. PubMed ID: 4379907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory chain of antimycin A-producing Streptomyces antibioticus.
    Rehácek Z; Ramankutty M; Kozová J
    Appl Microbiol; 1968 Jan; 16(1):29-32. PubMed ID: 4295178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen uptake by Treponema pallidum.
    Cox CD; Barber MK
    Infect Immun; 1974 Jul; 10(1):123-7. PubMed ID: 4366918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the electron transport system in Brucella abortus.
    Rest RF; Robertson DC
    J Bacteriol; 1975 Apr; 122(1):139-44. PubMed ID: 235507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-malate oxidation by the electron transport fraction of Azotobacter vinelandii.
    Jurtshuk P; Bednarz AJ; Zey P; Denton CH
    J Bacteriol; 1969 Jun; 98(3):1120-7. PubMed ID: 4977982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ELECTRON TRANSPORT IN BACILLUS POPILLIAE.
    PEPPER RE; COSTILOW RN
    J Bacteriol; 1965 Feb; 89(2):271-6. PubMed ID: 14255689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sulphate-limited growth on mitochondrial electron transfer and energy conservation between reduced nicotinamide-adenine dinucleotide and the cytochromes in Torulopsis utilis.
    Haddock BA; Garland PB
    Biochem J; 1971 Aug; 124(1):155-70. PubMed ID: 4399517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors influencing tetrazole reduction by reduced nicotinamide-adenine dinucleotide in pigeon-heart mitochondria.
    Talesara CL; Blanchaer MC
    Can J Biochem; 1967 Feb; 45(2):299-307. PubMed ID: 4290013
    [No Abstract]   [Full Text] [Related]  

  • 19. Respiratory activity of isolated mammalian nuclei. 3. The reduced nicotinamide adenine dinucleotide oxidase of rat liver nuclei and nucleoli.
    Currie WD; Davidian NM; Elliott WB; Rodman NF; Penniall R
    Arch Biochem Biophys; 1966 Jan; 113(1):156-66. PubMed ID: 4287444
    [No Abstract]   [Full Text] [Related]  

  • 20. Nitrate reductase and respiratory adaptation in Bacillus stearothermophilus.
    Downey RJ
    J Bacteriol; 1966 Feb; 91(2):634-41. PubMed ID: 4286885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.