BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4285479)

  • 1. L(+) lactic acid and the steady state of cellular red/ox-systems.
    Hohorst HJ; Arese P; Bartels H; Stratmann D; Talke H
    Ann N Y Acad Sci; 1965 Jul; 119(3):974-94. PubMed ID: 4285479
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies of the metabolic effects of acute insulin deficiency. II. Changes in hepatic glycolytic and krebs-cycle intermediates and pyridine nucleotides.
    Kalkhoff RK; Hornbrook KR; Burch HB; Kipnis DM
    Diabetes; 1966 Jul; 15(7):451-6. PubMed ID: 4380281
    [No Abstract]   [Full Text] [Related]  

  • 3. The redox state of NAD+-NADH systems in rat liver during ketosis, and the so-called "triosephosphate block".
    Söling HD; Kattermann R; Schmidt H; Kneer P
    Biochim Biophys Acta; 1966 Jan; 115(1):1-14. PubMed ID: 4286996
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation of glucose uptake by muscle. 9. Effects of fatty acids and ketone bodies, and of alloxan-diabetes and starvation, on pyruvate metabolism and on lactate-pyruvate and L-glycerol 3-phosphate-dihydroxyacetone phosphate concentration ratios in rat heart and rat diaphragm muscles.
    Garland PB; Newsholme EA; Randle PJ
    Biochem J; 1964 Dec; 93(3):665-78. PubMed ID: 4284560
    [No Abstract]   [Full Text] [Related]  

  • 5. [Intermediate steps of anaerobic cleavage of carbohydrates in human thrombocytes].
    Cherniak NB; Timofeeva LM
    Biokhimiia; 1967; 32(5):926-32. PubMed ID: 4300423
    [No Abstract]   [Full Text] [Related]  

  • 6. Influence of dietary sorbitol on the redox state of coenzymes and substrates linked to carbohydrate metabolism.
    Zanobini A; Firenzuoli AM; Treves C; Bianchi A; Casey H; Baccari V
    Pharmacol Res Commun; 1979 Apr; 11(4):357-63. PubMed ID: 225747
    [No Abstract]   [Full Text] [Related]  

  • 7. The balance of pyridine nucleotides and ATP in adipose tissue.
    Rognstad R; Katz J
    Proc Natl Acad Sci U S A; 1966 May; 55(5):1148-56. PubMed ID: 4381021
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of insulin and fatty acids on gluconeogenesis in the rat.
    Friedmann B; Goodman EH; Weinhouse S
    J Biol Chem; 1967 Aug; 242(16):3620-7. PubMed ID: 6038489
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of hepatic gluconeogenesis by 4-pentenoic acid.
    Ruderman NB; Toews CJ; Lowy C; Shafrir E
    Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):290-1. PubMed ID: 5420699
    [No Abstract]   [Full Text] [Related]  

  • 10. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver.
    Veech RL; Raijman L; Krebs HA
    Biochem J; 1970 Apr; 117(3):499-503. PubMed ID: 4315932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of iodoacetate on glycolysis and respiration in Ehrlich-Lettré ascites carcinoma cells.
    McKee RW; Wong W; Landman M
    Biochim Biophys Acta; 1965 Sep; 105(3):410-23. PubMed ID: 5893264
    [No Abstract]   [Full Text] [Related]  

  • 12. Pyruvic and L(+) lactic acid formation from glyceraldehyde via methylglyoxal in the soluble fraction of liver and in reconstructed systems.
    Bonsignore A; Castellani A; Fornaini G; Leoncini G; Segni P
    Ital J Biochem; 1968; 17(2):65-76. PubMed ID: 4321826
    [No Abstract]   [Full Text] [Related]  

  • 13. The redox state of NADplus-NADH systems in guinea pig liver during increased fatty acid oxidation.
    Willms B; Kleineke J; Söling HD
    Biochim Biophys Acta; 1970 Sep; 215(3):438-48. PubMed ID: 4319215
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of adenosine 3',5'-monophosphate in the control of gluconeogenesis.
    Exton JH; Mallette LE; Jefferson LS; Wong EH; Friedmann N; Park CR
    Am J Clin Nutr; 1970 Jul; 23(7):993-1003. PubMed ID: 4318411
    [No Abstract]   [Full Text] [Related]  

  • 15. Restoration of gluconeogenesis in biotin-deficient rats.
    Deodhar AD; Mistry SP
    Arch Biochem Biophys; 1969 May; 131(2):507-12. PubMed ID: 4306826
    [No Abstract]   [Full Text] [Related]  

  • 16. Diisopropylammonium dichloroaccetate: regulation of metabolic intermediates in muscle of alloxan diabetic rats.
    Stacpoole PW; Felts JM
    Metabolism; 1971 Sep; 20(9):830-4. PubMed ID: 4254777
    [No Abstract]   [Full Text] [Related]  

  • 17. The effect of oxamate on glycolysis in intact ascites tumor cells. I. Kinetic evidence for a dual glycolytic system.
    Coe EL; Strunk RC
    Biochim Biophys Acta; 1970 May; 208(2):189-202. PubMed ID: 5463330
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of ionising radiation on stationary concentration of the metabolites of anaerobic glycolysis in the liver of rats whole-body irradiated by the dose of 1400 R.
    Zícha B; Benes J; Dienstbier Z
    Strahlentherapie; 1968 Apr; 135(4):467-78. PubMed ID: 5675756
    [No Abstract]   [Full Text] [Related]  

  • 19. Metabolism of fructose and glyceraldehyde in the isolated perfused pig liver.
    Sestoft L; Damgaard S; Tygstrup N; Lundquist F
    Acta Med Scand Suppl; 1972; 542():119-29. PubMed ID: 4146847
    [No Abstract]   [Full Text] [Related]  

  • 20. Insulin-independent and extremely rapid switch in the partitioning of hepatic fatty acids from oxidation to esterification in starved-refed diabetic rats. Possible roles for changes in cell pH and volume.
    Moir AM; Zammit VA
    Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):953-8. PubMed ID: 7848296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.