These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4285660)

  • 1. Metabolism of pipecolic acid in a Pseudomonas species. 3. L-alpha-aminoadipate delta-semialdehyde:nicotinamide adenine dinucleotide oxidoreductase.
    Calvert AF; Rodwell VW
    J Biol Chem; 1966 Jan; 241(2):409-14. PubMed ID: 4285660
    [No Abstract]   [Full Text] [Related]  

  • 2. L-pipecolic acid metabolism in human liver: L-alpha-aminoadipate delta-semialdehyde oxidoreductase.
    Chang YF; Ghosh P; Rao VV
    Biochim Biophys Acta; 1990 May; 1038(3):300-5. PubMed ID: 2160277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of pipecolic acid in a Pseudomonas species. V. Pipecolate oxidase and dehydrogenase.
    Baginsky ML; Rodwell VW
    J Bacteriol; 1967 Oct; 94(4):1034-9. PubMed ID: 6051341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-linked succinic semialdehyde dehydrogenases in a Pseudonomas species.
    Padmanabhan R; Tchen TT
    J Bacteriol; 1969 Oct; 100(1):398-402. PubMed ID: 4390503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of malonate-semialdehyde: nicotinamide adenine dinucleotide (NAD) oxidoreductase in Pseudomonas fluorescens P-2.
    Mäntsälä P; Pirttikoski M; Nurmikko V
    Acta Chem Scand; 1972; 26(1):395-6. PubMed ID: 4336653
    [No Abstract]   [Full Text] [Related]  

  • 6. The coexistence of two pathways for the metabolism of 2-hydroxymuconic semialdehyde in a naphthalene-grown pseudomonad.
    Catterall FA; Sala-Trepat JM; Williams PA
    Biochem Biophys Res Commun; 1971 May; 43(3):463-9. PubMed ID: 4327441
    [No Abstract]   [Full Text] [Related]  

  • 7. Orthophosphite-nicotinamide adenine dinucleotide oxidoreductase from Pseudomonas fluorescens.
    Malacinski GM; Konetzka WA
    J Bacteriol; 1967 Jun; 93(6):1906-10. PubMed ID: 4381632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism.
    Chang YF; Adams E
    J Bacteriol; 1974 Feb; 117(2):753-64. PubMed ID: 4359655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of protocatechuate in Pseudomonas testosteroni by a pathway involving oxidation of the product of meta-fission.
    Dennis DA; Chapman PJ; Dagley S
    J Bacteriol; 1973 Jan; 113(1):521-3. PubMed ID: 4143957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of imidazol-5-yl-lactate-nicotinamide-adenine dinucleotide phosphate oxidoreductase and histidine-2-oxoglutarate aminotransferase in the degradation of imidazol-5-yl-lactate by Pseudomonas acidovorans.
    Coote JG; Hassall H
    Biochem J; 1969 Jan; 111(2):237-9. PubMed ID: 4303364
    [No Abstract]   [Full Text] [Related]  

  • 11. The dissimilation of higher dicarboxylic acids by Pseudomonas fluorscens.
    Hoet PP; Stanier RY
    Eur J Biochem; 1970 Mar; 13(1):65-70. PubMed ID: 4314711
    [No Abstract]   [Full Text] [Related]  

  • 12. Metabolism of pipecolic acid in a Pseudomonas species. II. delta1-Piperideine-6-carboxylic acid and alpha-aminoadipic acid-delta-semial-dehyde.
    BASSO LV; RAO DR; RODWELL VW
    J Biol Chem; 1962 Jul; 237():2239-45. PubMed ID: 13865660
    [No Abstract]   [Full Text] [Related]  

  • 13. The electron transport system of Hydrogenomonas eutropha. II. Reduced nicotinamide adenine dinucleotide-menadione reductase.
    Repaske R; Lizotte CL
    J Biol Chem; 1965 Dec; 240(12):4774-9. PubMed ID: 4284889
    [No Abstract]   [Full Text] [Related]  

  • 14. The metabolism of 2-hydroxymuconic semialdehyde by Azotobacter species.
    Sala-Trepat JM; Evans WC
    Biochem Biophys Res Commun; 1971 May; 43(3):456-62. PubMed ID: 4327440
    [No Abstract]   [Full Text] [Related]  

  • 15. Biosynthesis of lysine in Rhodotorula glutinis: role of pipecolic acid.
    Kurtz M; Bhattacharjee JK
    J Gen Microbiol; 1975 Jan; 86(1):103-10. PubMed ID: 1167573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of radioactive D- and L-alpha-aminoadipate of high specific activity by selective bacterial metabolism.
    Pekala P; Hartline RA
    Anal Biochem; 1973 Oct; 55(2):411-9. PubMed ID: 4750683
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolism of pipecolic acid in a Pseudomonas species. I. alpha-Aminoadipic and glutamic acids.
    RAO DR; RODWELL VW
    J Biol Chem; 1962 Jul; 237():2232-8. PubMed ID: 14490316
    [No Abstract]   [Full Text] [Related]  

  • 18. The metabolism of benzene by bacteria. Purification and some properties of the enzyme cis-1,2-dihydroxycyclohexa-3,5-diene (nicotinamide adenine dinucleotide) oxidoreductase (cis-benzene glycol dehydrogenase).
    Axcell BC; Geary PJ
    Biochem J; 1973 Dec; 136(4):927-34. PubMed ID: 4362337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bacterial degradation of pantothenic acid. IV. Enzymatic conversion of aldopantoate to alpha-ketoisovalerate.
    Magee PT; Snell EE
    Biochemistry; 1966 Feb; 5(2):409-16. PubMed ID: 4287371
    [No Abstract]   [Full Text] [Related]  

  • 20. Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds.
    Kaschabek SR; Reineke W
    Arch Microbiol; 1992; 158(6):412-7. PubMed ID: 1482270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.