These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 4285848)

  • 1. Biological mechanisms involved in the formation of deoxysugars. 3. Enzymatic conversion of thymidine diphosphoglucose-3T to thymidine diphospho-L-rhamnose.
    Gabriel O
    J Biol Chem; 1966 Feb; 241(4):924-9. PubMed ID: 4285848
    [No Abstract]   [Full Text] [Related]  

  • 2. Biological mechanisms involved in the formation of deoxysugars. II. Enzymatic conversion of thymidine diphosphoglucose-3T to thymidine diphospho-4-keto-6-deoxyglucose.
    Gabriel O; Ashwell G
    J Biol Chem; 1965 Nov; 240(11):4128-32. PubMed ID: 4954469
    [No Abstract]   [Full Text] [Related]  

  • 3. Biological mechanisms involved in the formation of deoxy sugars. IV. Enzymatic conversion of thymidine diphosphoglucose-4T to thymidine diphospho-4-keto-6-deoxyglucose-6T.
    Gabriel O; Lindquist LC
    J Biol Chem; 1968 Apr; 243(7):1479-84. PubMed ID: 4869561
    [No Abstract]   [Full Text] [Related]  

  • 4. Biological mechanisms involved in the formation of deoxysugars. I. Preparation of thymidine diphosphate glucose labeled specifically in carbon 3.
    Gabriel O; Ashwell G
    J Biol Chem; 1965 Nov; 240(11):4123-7. PubMed ID: 4284828
    [No Abstract]   [Full Text] [Related]  

  • 5. Biosynthesis of thymidine diphosphate L-rhamnose in Escherichia coli K-12.
    Nikaido H; Nikaido K; Rapin AM
    Biochim Biophys Acta; 1965 Dec; 111(2):548-51. PubMed ID: 5326028
    [No Abstract]   [Full Text] [Related]  

  • 6. Reaction of enolic sugar derivatives. 5. Studies on the conversion of thymidine diphosphate D-glucose to thymidine diphosphate 4-keto-6-deoxy-D-glucose using thymidine diphosphate D-[U-14C, 5-3H]glucose.
    Herrmann K; Lehmann J
    Eur J Biochem; 1968 Jan; 3(3):368-76. PubMed ID: 4868884
    [No Abstract]   [Full Text] [Related]  

  • 7. The mechanism of 6-deoxyhexose synthesis. II. Conversion of deoxythymidine diphosphate 4-keto-6-deoxy-D-glucose to deoxythymidine diphosphate L-rhamnose.
    Melo A; Glaser L
    J Biol Chem; 1968 Apr; 243(7):1475-8. PubMed ID: 4384782
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzymatic synthesis and isolation of thymidine diphosphate-6-deoxy-D-xylo-4-hexulose and thymidine diphosphate-L-rhamnose. Production using cloned gene products and separation by HPLC.
    Marumo K; Lindqvist L; Verma N; Weintraub A; Reeves PR; Lindberg AA
    Eur J Biochem; 1992 Mar; 204(2):539-45. PubMed ID: 1541269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thymidine diphosphate 4-keto-6-deoxy-d-glucose, an intermediate in thymidine diphosphate L-rhamnose synthesis in Escherichia coli strains.
    OKAZAKI R; OKAZAKIT ; STROMINGER JL; MICHELSON AM
    J Biol Chem; 1962 Oct; 237():3014-26. PubMed ID: 13939805
    [No Abstract]   [Full Text] [Related]  

  • 10. The mechanism of 6-deoxyhexose synthesis. I. Intramolecular hydrogen transfer catalyzed by deoxythymidine diphosphate D-glucose oxidoreductase.
    Melo A; Elliott WH; Glaser L
    J Biol Chem; 1968 Apr; 243(7):1467-74. PubMed ID: 4869560
    [No Abstract]   [Full Text] [Related]  

  • 11. THYMIDINE DIPHOSPHATE-L-RHAMNOSE METABOLISM IN SMOOTH AND ROUGH STRAINS OF ESCHERICHIA COLI AND SALMONELLA WESLACO.
    OKAZAKI T; STROMINGER JL; OKAZAKI R
    J Bacteriol; 1963 Jul; 86(1):118-24. PubMed ID: 14051803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular thymidine triphosphate concentrations in wild type and in thymine requiring mutants of Escherichia coli 15 and K12.
    Beacham IR; Beacham K; Zaritsky A; Pritchard RH
    J Mol Biol; 1971 Aug; 60(1):75-86. PubMed ID: 4937195
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies relating to the mode of action of methotrexate. 3. Inhibition of thymidylate synthetase in tissue culture cells and in cell-free systems.
    Borsa J; Whitmore GF
    Mol Pharmacol; 1969 Jul; 5(4):318-32. PubMed ID: 4896040
    [No Abstract]   [Full Text] [Related]  

  • 14. Distribution of tritium-labelled thymidine in Escherichia coli during cell multiplication.
    PAINTER RB; FORRO F; HUGHES WL
    Nature; 1958 Feb; 181(4605):328-9. PubMed ID: 13504177
    [No Abstract]   [Full Text] [Related]  

  • 15. Deoxyribonucleoside 5'-triphosphate pool fluctuations during the mammalian cell cycle.
    Bray G; Brent TP
    Biochim Biophys Acta; 1972 May; 269(2):184-91. PubMed ID: 4555254
    [No Abstract]   [Full Text] [Related]  

  • 16. Biological mechanisms involved in the formation of deoxy sugars. V. Isolation and crystallization of thymidine diphosphate-D-glucose oxidoreductase from Escherichia coli B.
    Wang SF; Gabriel O
    J Biol Chem; 1969 Jul; 244(13):3430-7. PubMed ID: 4307450
    [No Abstract]   [Full Text] [Related]  

  • 17. The enzymic synthesis of thymidine diphosphate glucose and thymidine diphosphate rhamnose.
    KORNFELD S; GLASER L
    Biochim Biophys Acta; 1960 Aug; 42():548-50. PubMed ID: 13753208
    [No Abstract]   [Full Text] [Related]  

  • 18. Roles for E. coli DNA polymerases I, II, and 3 in DNA replication.
    Tait RC; Smith DW
    Nature; 1974 May; 249(453):116-9. PubMed ID: 4598693
    [No Abstract]   [Full Text] [Related]  

  • 19. Thymidine-5'-triphosphate incorporation into DNA by rat thymus nuclei.
    Lagunoff D
    Exp Cell Res; 1969 Apr; 55(1):53-6. PubMed ID: 5780792
    [No Abstract]   [Full Text] [Related]  

  • 20. Attempts to link the interruptions in T5 bacteriophage DNA with an enzyme from E. coli.
    Moroson H; Anello A
    Biochem Biophys Res Commun; 1968 Oct; 33(1):1-9. PubMed ID: 4880246
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.