These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pyridine nucleotide oxidizing enzymes of Lactobacillus casei. II. Oxidase and peroxidase. Walker GA; Kilgour GL Arch Biochem Biophys; 1965 Sep; 111(3):534-9. PubMed ID: 4285876 [No Abstract] [Full Text] [Related]
3. A NONSPECIFIC PYRIDINE NUCLEOTIDE DIAPHORASE FROM SPINACH. LAZZARINI RA; SANPIETRO A Arch Biochem Biophys; 1964 Jul; 106():6-14. PubMed ID: 14217206 [No Abstract] [Full Text] [Related]
4. Electron-transport systems of yeast. II. Purification and properties of a soluble reduced diphosphopyridine nucleotide dehydrogenase. Duncan HM; Mackler B Biochemistry; 1966 Jan; 5(1):45-50. PubMed ID: 4287219 [No Abstract] [Full Text] [Related]
5. Mixed function oxidation. V. Flavin interaction with a reduced diphosphopyridine nucleotide dehydrogenase, one of the enzymes participating in camphor lactonization. Trudgill PW; DuBus R; Gunsalus IC J Biol Chem; 1966 Mar; 241(5):1194-205. PubMed ID: 4286778 [No Abstract] [Full Text] [Related]
6. The mechanism of 1- and 2-electron transfers catalyzed by reduced triphosphopyridine nucleotide-cytochrome c reductase. Masters BS; Bilimoria MH; Kamin H; Gibson QH J Biol Chem; 1965 Oct; 240(10):4081-8. PubMed ID: 4378860 [No Abstract] [Full Text] [Related]
7. Respiration of Lactobacillus casei. Brown JP; VanDemark PJ Can J Microbiol; 1968 Aug; 14(8):829-35. PubMed ID: 4385940 [No Abstract] [Full Text] [Related]
9. [Reduction of perchlorate by bacteria. II. The identity of nitrate reductase and pechlorate-reducing enzymes from B. cereus]. Hackenthal E Biochem Pharmacol; 1965 Sep; 14(9):1313-24. PubMed ID: 4379212 [No Abstract] [Full Text] [Related]
10. The effect of deoxycholate on enzymes with electron transport function from Rhodospirillum rubrum. Boll M Arch Mikrobiol; 1969; 68(3):191-200. PubMed ID: 5383853 [No Abstract] [Full Text] [Related]
11. Hydrogen-donor specificity of ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Vitols E; Blakley RL Biochem Biophys Res Commun; 1965 Dec; 21(5):466-72. PubMed ID: 5326296 [No Abstract] [Full Text] [Related]
12. Isolation and some properties of reduced diphosphopyridine nucleotide: 2,6-dichlorophenolindophenol soluble reductase from Mycobacterium phlei. Zagórski W; Kaniuga Z Acta Microbiol Pol; 1967; 16(2):91-9. PubMed ID: 4168405 [No Abstract] [Full Text] [Related]
13. Electron transport in chloroplasts. I. A combined requirement for plastoquinones A and C for photoreduction of 2,6-dichloroindophenol. Henninger MD; Crane FL J Biol Chem; 1966 Nov; 241(22):5190-6. PubMed ID: 5927995 [No Abstract] [Full Text] [Related]
14. An NADP reductase, an NADH-dye reductase and a non-haem iron protein isolated from a facultative photoheterotroph, Rhodopseudomonas palustris. Yamanaka T; Kamen MD Biochim Biophys Acta; 1967 Mar; 131(2):317-29. PubMed ID: 4383056 [No Abstract] [Full Text] [Related]
16. Stereochemistry of hydrogen-transfer in the energy-linked pyridine nucleotide transhydrogenase and related reactions. Lee CP; Simard-Duquesne N; Ernster L; Hoberman HD Biochim Biophys Acta; 1965 Sep; 105(3):397-409. PubMed ID: 4379364 [No Abstract] [Full Text] [Related]
17. ROLE OF SEMIQUINONES IN FLAVOPROTEIN CATALYSIS. MASSEY V; GIBSON QH Fed Proc; 1964; 23():18-29. PubMed ID: 14114688 [No Abstract] [Full Text] [Related]
19. One-electron-transfer reactions in biochemical systems. V. Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DT-diaphorase). Iyanagi T; Yamazaki I Biochim Biophys Acta; 1970 Sep; 216(2):282-94. PubMed ID: 4396182 [No Abstract] [Full Text] [Related]