These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4287344)

  • 1. Energy-linked reactions in mitochondria. Studies on the reduction of NAD+ by succinate.
    Griffiths DE; Roberton AM
    Biochim Biophys Acta; 1966 Jan; 113(1):13-26. PubMed ID: 4287344
    [No Abstract]   [Full Text] [Related]  

  • 2. Generation of reducing power in chemosynthesis. IV. Energy-linked reduction of pyridine nucleotides by succinate in Thiobacillus novellus.
    Aleem MI
    Biochim Biophys Acta; 1966 Oct; 128(1):1-12. PubMed ID: 4165956
    [No Abstract]   [Full Text] [Related]  

  • 3. The inhibition by 2,4-dinitrophenol of the removal of oxaloacetate formed by the oxidation of succinate by rat-liver and -heart mitochondria.
    Oestreicher AB; Van den Bergh SG; Slater EC
    Biochim Biophys Acta; 1969 May; 180(1):45-55. PubMed ID: 5787271
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of aurovertin on energy-linked processes related to oxidative phosphorylation.
    Lenaz G
    Biochem Biophys Res Commun; 1965 Oct; 21(2):170-5. PubMed ID: 4286024
    [No Abstract]   [Full Text] [Related]  

  • 5. Endergonic reduction of mitochondrial diphosphopyridine nucleotide by sarcosine.
    Frisell WR; Van Buskirk JJ
    J Biol Chem; 1967 Jan; 242(2):228-33. PubMed ID: 4163286
    [No Abstract]   [Full Text] [Related]  

  • 6. Evidence for P/O ratios approaching 6 in mitochondrial oxidative phosphorylation.
    Smith AL; Hansen M
    Biochem Biophys Res Commun; 1964 Apr; 15(5):431-5. PubMed ID: 4283980
    [No Abstract]   [Full Text] [Related]  

  • 7. Stimulation by arsenate of ATP-driven energy-linked reduction of NAD + by succinate.
    Huang CH; Mitchell RA
    Biochem Biophys Res Commun; 1971 Sep; 44(5):1102-8. PubMed ID: 4334272
    [No Abstract]   [Full Text] [Related]  

  • 8. General nature of "Wurster's blue shunts" in the respiratory chain.
    Mustafa MG; Cowger ML; Labbe RF; King TE
    J Biol Chem; 1968 Apr; 243(8):1908-18. PubMed ID: 4296472
    [No Abstract]   [Full Text] [Related]  

  • 9. The effects of adenine nucleotides on NADH binding to mitochondrial malate dehydrogenase.
    Oza NB; Shore JD
    Arch Biochem Biophys; 1973 Jan; 154(1):360-5. PubMed ID: 4347684
    [No Abstract]   [Full Text] [Related]  

  • 10. On the possible role of structural protein in the binding and translocation of adenine nucleotides in mitochondria.
    Palmieri F; Klingenberg M
    Biochim Biophys Acta; 1967 May; 131(3):582-5. PubMed ID: 4292161
    [No Abstract]   [Full Text] [Related]  

  • 11. Contraction of hypotonically swollen mitochondria by oxidizable substrates.
    Blair PV; Sollars FA
    Biochem Biophys Res Commun; 1967 Apr; 27(2):202-8. PubMed ID: 4291988
    [No Abstract]   [Full Text] [Related]  

  • 12. IMIDAZOLE INHIBITION OF THE ENERGY-LINKED REDUCTION OF NAD+ BY SUCCINATE.
    HOMMES F; ESTABROOK RW; CHANCE B; RASMUSSEN UF
    Biochim Biophys Acta; 1964 Mar; 81():585-7. PubMed ID: 14170328
    [No Abstract]   [Full Text] [Related]  

  • 13. The energy-yielding oxidation of NADH by fumarate in submitochondrial particles of rat tissues.
    Wilson MA; Cascarano J
    Biochim Biophys Acta; 1970 Aug; 216(1):54-62. PubMed ID: 4322295
    [No Abstract]   [Full Text] [Related]  

  • 14. The effects of cadmium on succinate and NADH-linked substrate oxidations in rat hepatic mitochondria.
    Cameron I; McNamee PM; Markham A; Morgan RM; Wood M
    J Appl Toxicol; 1986 Oct; 6(5):325-30. PubMed ID: 3772008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of an oligomycin-sensitive adenosine diphosphate-adenosine triphosphate exchange reaction in intact beef heart mitochondria.
    Bygrave FL; Lehninger AL
    J Biol Chem; 1966 Sep; 241(17):3894-903. PubMed ID: 5920801
    [No Abstract]   [Full Text] [Related]  

  • 16. Respiratory control in submitochondrial particles obtained by sonication.
    Vallin I
    Biochim Biophys Acta; 1968 Nov; 162(4):477-86. PubMed ID: 4302445
    [No Abstract]   [Full Text] [Related]  

  • 17. Accumulation of azide in mitochondria and the effect of azide on energy metabolism.
    Zvyagilskaya RA; Bogucka K; Wojtczak L
    Acta Biochim Pol; 1969; 16(2):163-73. PubMed ID: 4310370
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of mitochondrial succinate oxidation by alkyl hydroxy naphthoquinones.
    Howland JL
    Biochim Biophys Acta; 1965 Aug; 105(2):205-13. PubMed ID: 4158764
    [No Abstract]   [Full Text] [Related]  

  • 19. Propavane: an inhibitor of oxidative phosphorylation connected with mitochondrial glutamate metabolism.
    Rasmussen UF
    Biochem Biophys Res Commun; 1964 May; 16(1):19-26. PubMed ID: 4380862
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on respiration and 11 beta-hydroxylation of deoxycorticosterone in mitochondria and intact cells isolated from the Snell adrenocortical carcinoma 494.
    PĂ©ron FG; Haksar A; Lin M; Kupfer D; Robidoux W; Kimmel G; Bedigian E
    Cancer Res; 1974 Oct; 34(10):2711-9. PubMed ID: 4153485
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.