These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 4287407)

  • 1. The biohydrogenation of alpha-linolenic acid and oleic acid by rumen micro-organisms.
    Wilde PF; Dawson RM
    Biochem J; 1966 Feb; 98(2):469-75. PubMed ID: 4287407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species.
    Kemp P; White RW; Lander DJ
    J Gen Microbiol; 1975 Sep; 90(1):100-14. PubMed ID: 1236930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen.
    van de Vossenberg JL; Joblin KN
    Lett Appl Microbiol; 2003; 37(5):424-8. PubMed ID: 14633116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Octadecenoic acids in sheep rumen.
    Czerkawski JW; Blaxter KL
    Biochem J; 1965 Sep; 96(3):25contd-7c. PubMed ID: 5898615
    [No Abstract]   [Full Text] [Related]  

  • 5. BIOHYDROGENATION OF UNSATURATED FATTY ACIDS BY RUMEN BACTERIA.
    POLAN CE; MCNEILL JJ; TOVE SB
    J Bacteriol; 1964 Oct; 88(4):1056-64. PubMed ID: 14219019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrogenation of unsaturated fatty acids in the ovine digestive tract.
    Ward PF; Scott TW; Dawson RM
    Biochem J; 1964 Jul; 92(1):60-8. PubMed ID: 5840388
    [No Abstract]   [Full Text] [Related]  

  • 7. Ricinoleic acid inhibits methanogenesis and fatty acid biohydrogenation in ruminal digesta from sheep and in bacterial cultures.
    Ramos Morales E; Mata Espinosa MA; McKain N; Wallace RJ
    J Anim Sci; 2012 Dec; 90(13):4943-50. PubMed ID: 22829608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrogenation of gamma-linolenic acid by pure cultures of two rumen bacteria.
    Kemp P; Lander DJ
    Biochem J; 1983 Nov; 216(2):519-22. PubMed ID: 6318740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting the formation of 10-hydroxystearic acid from oleic acid by a ruminal strain of Enterococcus faecalis.
    Hudson JA; Mackenzie CA; Joblin KN
    Appl Microbiol Biotechnol; 1996 Apr; 45(3):404-7. PubMed ID: 8639306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hydrogenation of the series of methylene-interrupted cis,cis-octadecadienoic acids by pure cultures of six rumen bacteria.
    Kemp P; Lander DJ; Holman RT
    Br J Nutr; 1984 Jul; 52(1):171-7. PubMed ID: 6743637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hydrogenation of some cis- and trans-octadecenoic acids to stearic acid by a rumen Fusocillus sp.
    Kemp P; Lander DJ; Gunstone FD
    Br J Nutr; 1984 Jul; 52(1):165-70. PubMed ID: 6743636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of a rumen bacterium that hydrogenates oleic acid as well as linoleic acid and linolenic acid.
    White RW; Kemp P; Dawson RM
    Biochem J; 1970 Feb; 116(4):767-8. PubMed ID: 5435501
    [No Abstract]   [Full Text] [Related]  

  • 13. Analysis of alpha-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids.
    Destaillats F; Trottier JP; Galvez JM; Angers P
    J Dairy Sci; 2005 Sep; 88(9):3231-9. PubMed ID: 16107413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fish oil and sunflower oil on rumen fermentation characteristics and fatty acid composition of digesta in ewes fed a high concentrate diet.
    Toral PG; Shingfield KJ; Hervás G; Toivonen V; Frutos P
    J Dairy Sci; 2010 Oct; 93(10):4804-17. PubMed ID: 20855014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of α-linolenic acid during incubations with strained bovine rumen contents: products and mechanisms.
    Honkanen AM; Leskinen H; Toivonen V; McKain N; Wallace RJ; Shingfield KJ
    Br J Nutr; 2016 Jun; 115(12):2093-105. PubMed ID: 27087357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Carotino oil on in vitro rumen fermentation, metabolism and apparent biohydrogenation of fatty acids.
    Adeyemi KD; Ebrahimi M; Samsudin AA; Alimon AR; Karim R; Karsani SA; Sazili AQ
    Anim Sci J; 2015 Mar; 86(3):270-8. PubMed ID: 25377536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria.
    Nam IS; Garnsworthy PC
    J Appl Microbiol; 2007 Sep; 103(3):551-6. PubMed ID: 17714387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of some enteric bacteria which convert oleic acid to hydroxystearic acid in vitro.
    Thomas PJ
    Gastroenterology; 1972 Mar; 62(3):430-5. PubMed ID: 4622161
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro.
    Honkanen AM; Griinari JM; Vanhatalo A; Ahvenjärvi S; Toivonen V; Shingfield KJ
    J Dairy Sci; 2012 Mar; 95(3):1376-94. PubMed ID: 22365221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid.
    Devillard E; McIntosh FM; Newbold CJ; Wallace RJ
    Br J Nutr; 2006 Oct; 96(4):697-704. PubMed ID: 17010229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.