These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 4287579)

  • 1. Studies on the oxidative metabolism of Moniliformis dubius (Acanthocephala).
    Bryant C; Nicholas WL
    Comp Biochem Physiol; 1966 Mar; 17(3):825-40. PubMed ID: 4287579
    [No Abstract]   [Full Text] [Related]  

  • 2. The use of tetrazolium salts in the histochemical demonstration of succinic dehydrogenase activity in plant tissues.
    Gahan PB; Kalina M
    Histochemie; 1968; 14(1):81-8. PubMed ID: 5664672
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies on the respiratory system of aerobically (dark) and anaerobically (light) grown Rhodospirillum rubrum.
    Thore A; Keister DL; San Pietro A
    Arch Mikrobiol; 1969; 67(4):378-96. PubMed ID: 4392383
    [No Abstract]   [Full Text] [Related]  

  • 4. [The cytochrome oxidase system of light-anaerobically and dark-aerobically grown cells of Rhodopseudomonas capsulata].
    Klemme JH; Schlegel HG
    Arch Mikrobiol; 1969; 68(4):326-54. PubMed ID: 4315790
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the electron transfer system. 68. Formation of membranes as the basis of the reconstitution of the mitochondrial electron transfer system.
    Tzagoloff A; MacLennan DH; McConnell DG; Green DE
    J Biol Chem; 1967 May; 242(9):2051-61. PubMed ID: 4290220
    [No Abstract]   [Full Text] [Related]  

  • 6. The function and localization of ubiquinone in the NADH and succinate oxidase systems of Rhodopseudomonas palustris.
    King MT; Drews G
    Biochim Biophys Acta; 1973 May; 305(2):230-48. PubMed ID: 4147456
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparative studies on succinate and terminal oxidase activity in microbial and mammalian electron-transport systems.
    Jurtshuk P; May AK; Pope LM; Aston PR
    Can J Microbiol; 1969 Jul; 15(7):797-807. PubMed ID: 5796123
    [No Abstract]   [Full Text] [Related]  

  • 8. The restoration of DPNH oxidase activity by coenzyme Q (ubiquinone).
    Szarkowska L
    Arch Biochem Biophys; 1966 Mar; 113(3):519-25. PubMed ID: 4287664
    [No Abstract]   [Full Text] [Related]  

  • 9. Influence of some inhibitors on tetrazolium reduction under conditions of the histochemical localization of NAD(P)-linked dehydrogenases.
    Kraayenhof R; Diegenbach PC
    Acta Histochem; 1970; 35(1):102-7. PubMed ID: 4191486
    [No Abstract]   [Full Text] [Related]  

  • 10. Parasitological review. Electron transport systems and mitochondrial DNA in Trypanosomatidae: a review.
    Hill GC; Anderson WA
    Exp Parasitol; 1970 Oct; 28(2):356-80. PubMed ID: 4323391
    [No Abstract]   [Full Text] [Related]  

  • 11. Changes in the structure and enzyme activity of Saccharomyces cerevisiae in response to changes in the environment.
    Polakis ES; Bartley W; Meek GA
    Biochem J; 1964 Feb; 90(2):369-74. PubMed ID: 4284219
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b.
    Ernster L; Lee IY; Norling B; Persson B
    Eur J Biochem; 1969 Jun; 9(3):299-310. PubMed ID: 4307591
    [No Abstract]   [Full Text] [Related]  

  • 13. THE NATURE OF THE RADIATION-INDUCED LESION OF THE ELECTRON TRANSPORT CHAIN OF THYMUS MITOCHONDRIA.
    SCAIFE JF
    Can J Biochem; 1964 Mar; 42():431-4. PubMed ID: 14164289
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of superoxide radical in mitochondrial dehydrogenase reactions.
    Forman HJ; Kennedy JA
    Biochem Biophys Res Commun; 1974 Oct; 60(3):1044-50. PubMed ID: 4372996
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of inhibitors on the electron-transport chain of Bacillus brevis. Evidence for branching of the NADH oxidase respiratory chain.
    Seddon B; McVittie J
    J Gen Microbiol; 1974 Oct; 84(2):386-90. PubMed ID: 4155715
    [No Abstract]   [Full Text] [Related]  

  • 16. Electron transport systems of yeast. IV. Preparation and properties of a particulate DPNH, succinate cytochrome c reductase.
    Mackler B; Duncan HM
    Arch Biochem Biophys; 1967 Mar; 118(3):542-8. PubMed ID: 4292710
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on the mechanism of electron transport in the bc1-segment of the respiratory chain in yeast. II. The binding of antimycin to mitochondrial particles and the function of two different binding sites.
    Burger G; Lang B; Bandlow W; Kaudewitz F
    Biochim Biophys Acta; 1975 Aug; 396(2):187-201. PubMed ID: 168919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transport systems in kinetoplastida.
    Hill GC
    Biochim Biophys Acta; 1976 Sep; 456(2):149-93. PubMed ID: 788794
    [No Abstract]   [Full Text] [Related]  

  • 19. Electron transport systems of yeast. 3. Preparation and properties of cytochrome oxidase.
    Duncan HM; Mackler B
    J Biol Chem; 1966 Apr; 241(8):1694-7. PubMed ID: 4287709
    [No Abstract]   [Full Text] [Related]  

  • 20. Identification of an electron transfer particle from rat liver.
    Moury DN; Crane FL
    Biochem Biophys Res Commun; 1964 Apr; 15(5):442-6. PubMed ID: 4283981
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.