These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 4287664)

  • 1. The restoration of DPNH oxidase activity by coenzyme Q (ubiquinone).
    Szarkowska L
    Arch Biochem Biophys; 1966 Mar; 113(3):519-25. PubMed ID: 4287664
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b.
    Ernster L; Lee IY; Norling B; Persson B
    Eur J Biochem; 1969 Jun; 9(3):299-310. PubMed ID: 4307591
    [No Abstract]   [Full Text] [Related]  

  • 3. The inhibition of NADH oxidase by the lower homologs of coenzyme Q.
    Lenaz G; Pasquali P; Bertoli E; Parenti-Castelli G
    Arch Biochem Biophys; 1975 Jul; 169(1):217-26. PubMed ID: 1164022
    [No Abstract]   [Full Text] [Related]  

  • 4. The function and localization of ubiquinone in the NADH and succinate oxidase systems of Rhodopseudomonas palustris.
    King MT; Drews G
    Biochim Biophys Acta; 1973 May; 305(2):230-48. PubMed ID: 4147456
    [No Abstract]   [Full Text] [Related]  

  • 5. Two sites of coenzyme Q in mitochondria of Saccharomyces cerevisiae.
    Castelli A; Lenaz G; Folkers K
    Biochem Biophys Res Commun; 1969 Jan; 34(2):200-4. PubMed ID: 5796740
    [No Abstract]   [Full Text] [Related]  

  • 6. The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain.
    Kröger A; Klingenberg M
    Eur J Biochem; 1973 Apr; 34(2):358-68. PubMed ID: 4351161
    [No Abstract]   [Full Text] [Related]  

  • 7. Specificity of lipids and coenzyme Q in mitochondrial NADH and succin-oxidase of beef heart and S. cerevisiae.
    Lenaz G; Castelli A; Littarru GP; Bertoli E
    Arch Biochem Biophys; 1971 Feb; 142(2):407-16. PubMed ID: 4323724
    [No Abstract]   [Full Text] [Related]  

  • 8. On the redox potentials of ubiquinone and cytochrome b in the respiratory chain.
    Urban PF; Klingenberg M
    Eur J Biochem; 1969 Jul; 9(4):519-25. PubMed ID: 5806500
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on the mechanism of inhibitionof the mitochondrial electron transport by antimycin. II. Antimycin as an allosteric inhibitor.
    Bryla J; Kaniuga Z; Slater EC
    Biochim Biophys Acta; 1969; 189(3):317-26. PubMed ID: 4312199
    [No Abstract]   [Full Text] [Related]  

  • 10. NADH oxidase system of Agrobacterium tumefaciens.
    Kurup CK; Vaidyanathan CS; Ramasarma T
    Arch Biochem Biophys; 1966 Mar; 113(3):548-53. PubMed ID: 4287666
    [No Abstract]   [Full Text] [Related]  

  • 11. A possible role for cytochrome b-555 in the mung bean mitochondrial electron transport system.
    Shichi H; Hackett DP
    J Biochem; 1966 Jan; 59(1):84-8. PubMed ID: 4287287
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of thenoyltrifluoroacetone on the interaction of succinate dehydrogenase and cytochrome b in ubiquinone-depleted submitochondrial particles.
    Nelson BD; Norling B; Persson B; Ernster L
    Biochem Biophys Res Commun; 1971 Sep; 44(6):1312-20. PubMed ID: 5160697
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on dihydronicotinamide adenine dinucleotide ubiquinone reductase. I. Assay of ubiquinone reductase activity in submitochondrial particles and extracts.
    Pharo RL; Sordahl LA; Vyas SR; Sanadi DR
    J Biol Chem; 1966 Oct; 241(20):4771-80. PubMed ID: 4288750
    [No Abstract]   [Full Text] [Related]  

  • 14. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The respiratory system of the aerobic, nitrogen-fixing, gram-positive bacterium, Mycobacterium flavum 301.
    Erickson SK
    Biochim Biophys Acta; 1971 Aug; 245(1):63-9. PubMed ID: 4332102
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on the mitochondrial electron transport system in Aspergillus.
    Higgins ES; Friend WH
    Proc Soc Exp Biol Med; 1970 Feb; 133(2):435-8. PubMed ID: 4313141
    [No Abstract]   [Full Text] [Related]  

  • 17. Resolution of complex I (DPNH-coenzyme Q reductase) of the mitochondrial electron transfer system.
    Hatefi Y; Stempel KE
    Biochem Biophys Res Commun; 1967 Feb; 26(3):301-8. PubMed ID: 4291900
    [No Abstract]   [Full Text] [Related]  

  • 18. Variation in inhibitor sensitivity of NADH-menadione reductase from mitochondria.
    Hall CL; Crane FL
    Biochem Biophys Res Commun; 1967 Jan; 26(2):138-47. PubMed ID: 4291554
    [No Abstract]   [Full Text] [Related]  

  • 19. Partial resolution of the enzymes catalyzing oxidative phosphorylation. VII. Oxidative phosphorylation in the diphosphopyridine nucleotide-cytochrome b segment of the respiratory chain: assay and properties in submitochondrial particles.
    Schatz G; Racker E
    J Biol Chem; 1966 Mar; 241(6):1429-38. PubMed ID: 4286911
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata.
    Klemme JH
    Z Naturforsch B; 1969 Jan; 24(1):67-76. PubMed ID: 4388881
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.