BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 4288128)

  • 1. Electron transport in Azotobacter vinelandii.
    Jones CW; Redfearn ER
    Biochim Biophys Acta; 1966 Mar; 113(3):467-81. PubMed ID: 4288128
    [No Abstract]   [Full Text] [Related]  

  • 2. Multiple sites for coupling of glucose transport to the respiratory chain of membrane vesicles from Azotobacter vinelandii.
    Barnes EM
    J Biol Chem; 1973 Dec; 248(23):8120-4. PubMed ID: 4148099
    [No Abstract]   [Full Text] [Related]  

  • 3. L-malate oxidation by the electron transport fraction of Azotobacter vinelandii.
    Jurtshuk P; Bednarz AJ; Zey P; Denton CH
    J Bacteriol; 1969 Jun; 98(3):1120-7. PubMed ID: 4977982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electron-transport system of Micrococcus lutea (Sarcina lutea).
    Erickson SK; Parker GL
    Biochim Biophys Acta; 1969 May; 180(1):56-62. PubMed ID: 4182398
    [No Abstract]   [Full Text] [Related]  

  • 5. Preparation of red and green electron transport particles from Azotobacter vinelandii.
    Jones CW; Redfearn ER
    Biochim Biophys Acta; 1967 Sep; 143(2):354-62. PubMed ID: 6049954
    [No Abstract]   [Full Text] [Related]  

  • 6. Respiratory chain of antimycin A-producing Streptomyces antibioticus.
    Rehácek Z; Ramankutty M; Kozová J
    Appl Microbiol; 1968 Jan; 16(1):29-32. PubMed ID: 4295178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the mechanism of inhibitionof the mitochondrial electron transport by antimycin. II. Antimycin as an allosteric inhibitor.
    Bryla J; Kaniuga Z; Slater EC
    Biochim Biophys Acta; 1969; 189(3):317-26. PubMed ID: 4312199
    [No Abstract]   [Full Text] [Related]  

  • 8. Chlorpromazine inhibition of electron transport in Azotobacter vinelandii membranes.
    Wong TY; Maier RJ
    Biochim Biophys Acta; 1985 May; 807(3):320-3. PubMed ID: 3995019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADH oxidase system of Agrobacterium tumefaciens.
    Kurup CK; Vaidyanathan CS; Ramasarma T
    Arch Biochem Biophys; 1966 Mar; 113(3):548-53. PubMed ID: 4287666
    [No Abstract]   [Full Text] [Related]  

  • 11. Oxidation of D(minus) lactate by the electron transport fraction of Azotobacter vinelandii.
    Jurtshuk P; Harper L
    J Bacteriol; 1968 Sep; 96(3):678-86. PubMed ID: 5732503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome and ubiquinone patterns during growth of Azotobacter vinelandii.
    Knowles CJ; Redfearn ER
    J Bacteriol; 1969 Feb; 97(2):756-60. PubMed ID: 5773028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory control in Azotobacter vinelandii membranes.
    Jones CW; Ackrell BA; Erickson SK
    Biochim Biophys Acta; 1971 Aug; 245(1):54-62. PubMed ID: 4332101
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxidative phosphorylation in Azotobacter vinelandii particles. Phosphorylation sites and respiratory control.
    Eilermann LJ; Pandit-Hovenkamp HG; Kolk AH
    Biochim Biophys Acta; 1970 Jan; 197(1):25-30. PubMed ID: 4312654
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanism of oxidative phosphorylation in the chemoautotroph Nitrobacter agilis.
    Aleem MI
    Biochim Biophys Acta; 1968 Oct; 162(3):338-47. PubMed ID: 4300593
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of combinded-nitrogen sources on the synthesis and function of the electron transport system of Azotobacter vinelandii.
    Knowles CJ; Redfearn ER
    Biochim Biophys Acta; 1968 Oct; 162(3):348-55. PubMed ID: 5680277
    [No Abstract]   [Full Text] [Related]  

  • 17. Electron transport in beef heart muscle preparation. The inhibition of ubiquinone-stimulated succinate oxidase activity by antimycin and a quinoline-N-oxide derivative.
    Fynn GH
    Biochim Biophys Acta; 1969 Jun; 180(2):244-52. PubMed ID: 5795468
    [No Abstract]   [Full Text] [Related]  

  • 18. Generation of reducing power in chemosynthesis. V. The mechanism of pyridine nucleotide reduction by nitrite in the chemoautotroph Nitrobacter agilis.
    Sewell DL; Aleem MI
    Biochim Biophys Acta; 1969 Apr; 172(3):467-75. PubMed ID: 4305696
    [No Abstract]   [Full Text] [Related]  

  • 19. The cytochrome system of Azotobacter vinelandii.
    Jones CW; Redfearn ER
    Biochim Biophys Acta; 1967 Sep; 143(2):340-53. PubMed ID: 4292889
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the mechanism of inhibition of the mitochondrial electron transport by antimycin. 3. Binding of antimycin to sub-mitochondrial particles and to complex 3.
    Bryla J; Kaniuga Z; Slater EC
    Biochim Biophys Acta; 1969; 189(3):327-36. PubMed ID: 5363975
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.