These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 4288723)
1. Control of glycolysis in the human red blood cell. Rose IA; Warms JV J Biol Chem; 1966 Nov; 241(21):4848-54. PubMed ID: 4288723 [No Abstract] [Full Text] [Related]
2. Control of red cell glycolysis. The cause of triose phosphate accumulation. Rose IA; Warms JV J Biol Chem; 1970 Aug; 245(16):4009-15. PubMed ID: 4395680 [No Abstract] [Full Text] [Related]
3. Erythrocyte metabolism in the bottle-nosed dolphin, Tursiops truncatus. Harkness DR; Grayson V Comp Biochem Physiol; 1969 Mar; 28(3):1289-301. PubMed ID: 4389162 [No Abstract] [Full Text] [Related]
4. Glycolytic control mechanisms. II. Kinetics of intermediate changes during the aerobic-anoxic transition in perfused rat heart. Williamson JR J Biol Chem; 1966 Nov; 241(21):5026-36. PubMed ID: 4224561 [No Abstract] [Full Text] [Related]
5. Studies on erythrocyte glycolysis. 3. The effects of active cation transport, pH and inorganic phosphate concentration on erythrocyte glycolysis. Minakami S; Yoshikawa H J Biochem; 1966 Feb; 59(2):145-50. PubMed ID: 4223319 [No Abstract] [Full Text] [Related]
6. [Nucleotide synthesis and carbohydrate metabolism in hemolysates]. Klein W; Beretta E Experientia; 1966 Mar; 22(3):139-40. PubMed ID: 5959915 [No Abstract] [Full Text] [Related]
7. Potassium transport and control of glycolysis in human erythrocytes. Eckel RE; Rizzo SC; Lodish H; Berggren AB Am J Physiol; 1966 Apr; 210(4):737-43. PubMed ID: 4222110 [No Abstract] [Full Text] [Related]
8. Studies on erythrocyte glycolysis. VII. Changes of glycolytic intermediates in erythrocytes during storage in acid-citrate-dextrose medium. Oyama H; Minakami S; Yoshikawa H J Biochem; 1968 Feb; 63(2):254-60. PubMed ID: 4299378 [No Abstract] [Full Text] [Related]
9. DPNH oscillations in glycolyzing cell free extracts from beef heart. Frenkel R Biochem Biophys Res Commun; 1965 Dec; 21(5):497-502. PubMed ID: 4286527 [No Abstract] [Full Text] [Related]
10. [Anomalies of glycolysis during hemolytic anemia due to deficiency of pyruvate kinase in the erythrocytes]. Cartier P; Najman A; Leroux JP; Temkine H Clin Chim Acta; 1968 Oct; 22(2):165-81. PubMed ID: 5687084 [No Abstract] [Full Text] [Related]
11. [Biochemical changes in heart arrest]. Krause EG Z Gesamte Inn Med; 1969 Jan; 24(2):Suppl:19-24. PubMed ID: 5795691 [No Abstract] [Full Text] [Related]
12. Correlations between adenine nucleotide levels and the velocities of rate-determining steps in the glycolysis and respiration of intact Ehrlich ascites carcinoma cells. Coe EL Biochim Biophys Acta; 1966 Jun; 118(3):495-511. PubMed ID: 4291240 [No Abstract] [Full Text] [Related]
13. The effect of metabolic inhibitors on the response of the perfused rat heart to epinephrine. Horn RS; Aronson CE; Hess ME; Haugaard N Biochem Pharmacol; 1967 Nov; 16(11):2109-16. PubMed ID: 6076604 [No Abstract] [Full Text] [Related]
14. Control of glycolysis and respiration in substrate-depleted Ehrlich ascites tumor cells. Ibsen KH; Schiller KW Arch Biochem Biophys; 1971 Mar; 143(1):187-203. PubMed ID: 4327236 [No Abstract] [Full Text] [Related]
15. Metabolite status of the heart in acute insufficiency due to 1-fluoro-2,4-dinitrobenzene. Gercken G; Schlette U Experientia; 1968 Jan; 24(1):17-9. PubMed ID: 5637602 [No Abstract] [Full Text] [Related]
16. [Influence of some substrates and inhibitors on the metabolic activity of a hemolysate of human erythrocytes]. Klein W; Beretta E Acta Vitaminol Enzymol; 1967; 21(3):73-9. PubMed ID: 6072554 [No Abstract] [Full Text] [Related]
17. Regulation of human red cell glycolysis: a review. Rose IA Exp Eye Res; 1971 May; 11(3):264-72. PubMed ID: 4256448 [No Abstract] [Full Text] [Related]
18. The mechanism of inhibition of glycolysis by quinidine in heart tissue in vitro. Horn RS Biochem Pharmacol; 1968 Aug; 17(8):1717-25. PubMed ID: 4233761 [No Abstract] [Full Text] [Related]
19. Fructose 1,6-diphosphate and 3',5'-cyclic AMP as positive effectors of pyruvate kinase in developing embryos. Milman LS; Yurowitzki YuG Biochim Biophys Acta; 1967 Sep; 146(1):301-4. PubMed ID: 6060474 [No Abstract] [Full Text] [Related]
20. Control of glycolysis in human erythrocytes by inorganic phosphate and sulfate. Rizzo SC; Eckel RE Am J Physiol; 1966 Aug; 211(2):429-36. PubMed ID: 4224148 [No Abstract] [Full Text] [Related] [Next] [New Search]